Melanin-Concentrating Hormone Receptor 1 Antagonists. Synthesis and Structure-Activity Relationships of Novel 3(Aminomethyl)quinolines

Makoto Kamata,* Toshiro Yamashita, Toshihiro Imaeda, Toshio Tanaka, Shinichi Masada, Masahiro Kamaura, Shizuo Kasai, Ryoma Hara, Shigekazu Sasaki, Shiro Takekawa, Asano Asami, Tomoko Kaisho, Nobuhiro Suzuki, Shuntaro Ashina, Hitomi Ogino, Yoshihide Nakano, Yasutaka Nagisa, Koki Kato, Kaneyoshi Kato, and Yuji Ishihara
Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraokahigashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan

Abstract

It was found that 3-(aminomethyl)quinoline derivatives showed high binding affinities for melanin-concentrating hormone receptor 1 (MCHR1) with reduced affinity for serotonin receptor $2 \mathrm{c}(5-\mathrm{HT} 2 \mathrm{c})$ when the dihydronaphthalene nucleus of compound $\mathbf{1}$ (human MCHR1, $\mathrm{IC}_{50}=1.9 \mathrm{nM}$; human 5-HT2c receptor, $\mathrm{IC}_{50}=0.53 \mathrm{nM}$) was replaced by other bicyclic core scaffolds. Among the synthesized compounds, 8-methylquinoline derivative $5 v$ especially showed high binding affinity $\left(\mathrm{IC}_{50}=0.54 \mathrm{nM}\right)$, potent in vitro antagonistic activity $\left(\mathrm{IC}_{50}=2.8\right.$ nM) for MCHR1, and negligible affinity for 5 -HT2c receptor ($\mathrm{IC}_{50}>1000 \mathrm{nM}$). Oral administration of $5 \mathbf{v}$ significantly and dose-dependently suppressed nocturnal food intake in diet-induced obese rats and did not affect food intake in MCHR1-deficient mice. These results and rat pharmacokinetic study findings suggested that compound $\mathbf{5 v}$ is a highly potent, orally bioavailable, and centrally acting nonpeptide MCHR1 antagonist.

INTRODUCTION

Melanin-concentrating hormone receptor 1 (MCHR1) antagonism has been recognized as a promising target in obesity treatment. Tetrahydronaphthalene derivative T-226296 ${ }^{1}$ has been reported to be an MCHR1 antagonist, and exhibits a potent in vitro binding affinity and in vivo anorectic effect. In our previous paper, ${ }^{2}$ we reported that dihydronaphthalene derivative 1 also exhibited potent binding affinity for MCHR1 and significantly reduced the nocturnal food intake of KKA^{y} mice and Sprague-Dawley rats after oral administration. However, further investigation revealed that compound 1 showed poor receptor selectivity, especially antagonist activity for $5-\mathrm{HT} 2 \mathrm{c}$ receptor. While $5-\mathrm{HT} 2 \mathrm{c}$ receptor agonists are known as antiobesity drugs as they suppressed the appetite in clinical trials, ${ }^{3-6}$ the relationship between 5-HT2c receptor antagonists and food intake still remains obscure. It has been suggested that the $5-\mathrm{HT} 2 \mathrm{c}$ receptor plays a role in central nervous system (CNS) disorders, for example, anxiety, depression, and drug dependence. ${ }^{7-9}$ To clarify the anorectic effect on the basis of MCHR1 antagonism, we replaced the dihydronaphthalene nucleus and the biaryl moiety of $\mathbf{1}$ with other bicyclic scaffolds and equivalent groups that may exhibit less affinity for the $5-\mathrm{HT} 2 \mathrm{c}$ receptor. In this paper, we report the structure-activity relationship (SAR) study that led us to identify 8 -methylquinoline derivative $\mathbf{5 v}$ as a potent MCHR1 antagonist that is highly selective (>1800-fold) over the 5HT2c receptor.

CHEMISTRY

Naphthalene derivative 2 was synthesized as shown in Scheme 1. Partial hydrolysis of commercially available diester 6 with 1 M NaOH gave carboxylic acid 7 in 60% yield. Curtius rearrangement of the acid 7 with diphenylphosphoryl azide in t BuOH gave methyl ester 8, which was converted to alcohol 9 by reduction with lithium aluminum hydride. Compound 10 was obtained by mesylation of alcohol 9 and subsequent amine substitution of the resulting mesylate in the presence of pyrrolidine. The Boc group in 10 was deprotected, and the generated amine was condensed with 4 '-fluorobiphenylcarboxylic acid using the peptide coupling method to provide naphthalene derivative 2 .

The synthetic route of chromene derivative 3 is shown in Scheme 2. Michael addition of 3-(acetylamino)phenol (11) to ethyl acrylate in the presence of Triton B and subsequent acid hydrolysis of the resulting phenoxy ester $\mathbf{1 2}$ with HCl gave 3phenoxypropionic acid 13 in 40% yield. Friedel-Crafts cyclization of the 3-phenoxypropionyl chloride, which was obtained by treatment of 13 with thionyl chloride, regioselectively gave ketone 14 in 70% yield. Condensation of 14 with dimethylformamide dimethyl acetal gave enaminone 15. Replacement of the dimethylamino group in 15 with pyrrolidine and subsequent reduction with NaBH_{4} under acidic conditions followed by dehydration and deprotection with HCl afforded chromen-7-ylamine derivative 16 in 54% yield. Amine

[^0]

Scheme 1^{a}

${ }^{a}$ Reagents and conditions: (a) 1 M NaOH , DMF; (b) DPPA, TEA, t - BuOH; (c) LiAlH_{4}, THF; (d) (i) MsCl, TEA, THF; (ii) pyrrolidine, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF; (e) (i) TFA; (ii) 4'-fluorobiphenylcarboxylic acid, EDC•HCl, DMAP, DMF.

Scheme 2^{a}

${ }^{a}$ Reagents and conditions: (a) ethyl acrylate, Triton B; (b) $5 \mathrm{M} \mathrm{HCl}, \mathrm{AcOH}$; (c) $\mathrm{SOCl}_{2}, \mathrm{EtNO}_{2}$, then AlCl_{3}; (d) dimethylformamide dimethyl acetal; (e) (i) pyrrolidine; (ii) $\mathrm{NaBH}_{4}, \mathrm{AcOH}, 2-\mathrm{PrOH}$; (iii) $6 \mathrm{M} \mathrm{HCl}^{\prime}$ (f) 4'-fluorobiphenylcarboxylic acid, EDC•HCl, HOBt, DMAP, DMF.

Scheme 3^{a}

${ }^{a}$ Reagents and conditions: (a) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; (b) $\mathrm{mCPBA}, \mathrm{CHCl}_{3}$; (c) (i) $\mathrm{Ac}_{2} \mathrm{O}$; (ii) $1 \mathrm{M} \mathrm{NaOH}, \mathrm{MeOH}$; (d) (i) $\mathrm{MsCl}, \mathrm{TEA}$, DMF ; (ii) pyrrolidine, $\mathrm{K}_{2} \mathrm{CO}_{3}$; (e) (i) concentrated HCl ; (ii) 4'-fluorobiphenylcarboxylic acid, EDC. HCl , DMAP, DMF.

16 was condensed with 4 'fluorobiphenyl carboxylic acid to provide chromene derivative 3.

Quinoline derivative 4 was synthesized as shown in Scheme 3. (Acetylamino) quinoline derivative 18, which was obtained by acetylation of commercially available quinoline 17 , was oxidized with m-chloroperbenzoic acid ($m \mathrm{CPBA}$) to give quinoline N oxide 19 in 82% yield. Rearrangement of N -oxide 19 with acetic
anhydride and subsequent hydrolysis of the resulting acetate with NaOH afforded the key intermediate 20 in 57% yield. Mesylation of alcohol 20 and subsequent amine substitution of the resulting mesylate gave 21 in moderate yields. After deprotection of the acetyl group in 21 by HCl , the generated amine was condensed with 4'-fluorobiphenylcarboxylic acid to provide quinoline derivative 4.

Scheme 4^{a}

${ }^{a}$ Reagents and conditions: (a) vinadinium salt, BuOH ; (b) NaBH_{4}, EtOH , THF; (c) SOCl_{2}; (d) pyrrolidine, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF; (e) concentrated HCl ; (f) 4-bromobenzoyl chloride, TEA, THF; (g) substituted phenylboronic acids, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 2 \mathrm{M} \mathrm{Na}{ }_{2} \mathrm{CO}_{3}$, THF; (h) substituted biphenylcarboxylic acids, EDC•HCl, DMAP, DMF or substituted benzoyl chlorides, TEA, THF; (i) substituted nicotinic acids, EDC•HCl, DMAP, DMF; (j) substituted phenylpiperidines, CDI, DMA.

Scheme 5^{a}

${ }^{a}$ Reagents and conditions: (a) vinadinium salt, BuOH ; (b) $\mathrm{NaBH}_{4}, \mathrm{EtOH}$, THF; (c) SOCl_{2}; (d) pyrrolidine, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$; (e) concentrated HCl ; (f) substituted biphenylcarboxylic acids, EDC•HCl, DMAP, DMF; (g) substituted phenylboronic acids, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$, THF.

Quinoline derivatives $\mathbf{5 a}-\mathbf{p}, \mathbf{5 t}$, and $\mathbf{5 u}$ were synthesized by the general procedure shown in Scheme 4. Reaction of N -(3aminophenyl)acetamide derivatives $\mathbf{2 2 - 2 5}$ with a vinadinium salt gave 3 -formylquinoline derivatives in one step, ${ }^{10}$ which were converted to alcohols 26 - 29 by reduction with sodium borohydride. Chlorination of 26-29 with thionyl chloride, followed by introduction of the pyrrolidinyl group into $30-33$ and subsequent deacylation of 34-37 under acidic conditions, afforded intermediary 7 -aminoquinolines 38-41. Compound 38 was acylated with the appropriate carboxylic acids to produce biphenylcarboxamides $\mathbf{5 a - e}$. Alternatively, acylation of 39-41 with 4-bromobenzoyl chloride, followed by the Suzuki coupling reaction with 42-44 and 4-fluorophenylboronic acid, afforded biphenylcarboxamides $\mathbf{5 p}, \mathbf{5 t}$, and $\mathbf{5 u}$. Phenylnicotinamides $\mathbf{5 f}-\mathbf{j}$ were also obtained by acylation of
compound 38 with appropriate nicotinic acids. In addition, reaction of 38 and phenylpiperidine derivatives afforded urea analogues $5 \mathbf{k}-\mathbf{o}$ using $1,1^{\prime}$-carbonyldiimidazole (CDI).

An alternative route (Scheme 5) was developed in the quinoline series containing an electron-donating group such as methyl, ethyl, and methoxy. The requisite 7-[(4bromobenzoyl)amino]quinolines $57-60$ were prepared from corresponding anilines $45-48$ in a manner similar to that described in Scheme 4, i.e., cyclization with a vinadinium salt, reduction, chlorination, and amination. Finally, compounds $\mathbf{5 7 - 6 0}$ were converted to the desired biphenylcarboxamides $\mathbf{5 q}-\mathbf{s}$ and $\mathbf{5 v - z}$ by the Suzuki coupling reaction with various phenylboronic acids or by the peptide coupling reaction using amines 61 and 62.

Scheme $\mathbf{6}^{\boldsymbol{a}}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; (b) $10 \% \mathrm{Pd} / \mathrm{C}$, cyclohexene, EtOH ; (c) $1 \mathrm{M} \mathrm{NaOH}, \mathrm{MeOH}$; (d) DPPA, TEA, t - BuOH ; (e) 4 M $\mathrm{HCl}-\mathrm{EtOAc}$; (f) 4-bromobenzoyl chloride, TEA, THF; (g) $\mathrm{Fe}, \mathrm{CaCl}_{2}$, aq EtOH; (h) $\mathrm{PhN}\left(\mathrm{SO}_{2} \mathrm{Me}^{2}\right) \mathrm{SO}_{2} \mathrm{CF}_{3}$, DIEA, THF; (i) $\mathrm{CH}_{2}=\mathrm{CHSn}(n-\mathrm{Bu})_{3}$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{DMF} ;(\mathrm{j}) \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$.

The synthetic route used in preparation of starting materials 23 and 45-48 is outlined in Scheme 6. Acetylation of 2-fluoro3 -nitroaniline (63), followed by reduction of the nitro group, provided compound 23. Hydrolysis of methyl 3-nitrobenzoate 65 gave carboxylic acid 66, which was converted to protected aniline 67 by the Curtius rearrangement. Deprotection of 67, followed by acylation and successive reduction of the nitro group, afforded compound 46. The Stille coupling reaction of the triflate prepared from phenol derivative 68 with tributylvinyltin proceeded smoothly to give vinylbenzene derivative 69. Hydrolysis of ester 69, followed by the Curtius rearrangement reaction, afforded Boc-protected aniline 70. Reduction of the double bond and nitro group of 70 was followed by acylation and then deprotection of the furnished compound 47. Compounds 45 and 48 were prepared by reduction of the corresponding nitrobenzenes 71 and 72 by using iron powder, respectively.

RESULTS AND DISCUSSION

In Vitro Studies. Compounds prepared in this study were evaluated for their binding affinities to hMCHR1 and rMCHR1 and human 5-HT2c receptor by using a stably transfected Chinese hamster ovary (CHO) cell line. Binding assays of the test compounds were performed in the presence of [$\left.{ }^{125} \mathrm{I}\right] \mathrm{MCH}$ -(4-19) for MCHR1 or $\left[{ }^{3} \mathrm{H}\right]$ mesulergine for $5-\mathrm{HT} 2 \mathrm{c}$. Secondary functional cell-based assays for the inhibition of MCH -stimulated arachidonic acid release from CHO cells were also performed, and the test compounds were found to be antagonists.

Binding affinities for MCHR1 and 5-HT2c receptor of naphthalene, 2,6- and 3,7-substituted quinoline, chromene derivatives, and corresponding dihydronaphthalene derivative 1 are shown in Table 1 . Compounds 4 and 5a exhibited equipotent affinity, and compounds 2 and 3 showed slightly more potent activities for MCHR1 in comparison with 1 . In

Table 1. In Vitro Binding Affinity and Antagonist Activity ${ }^{a}$ and Approximate Solubility of Various Fused Ring Systems

Compd.	scaffold				
		hMCHR1		5-HT2c	Solubility ${ }^{\text {b }}$
		Binding $\mathrm{IC}_{50}(\mathrm{nM})$	$\begin{gathered} \mathrm{AA} \\ \mathrm{IC}_{50}(\mathrm{nM})^{\mathrm{c}} \\ \hline \end{gathered}$	Binding $\mathrm{IC}_{50}(\mathrm{nM})$	$\mu \mathrm{g} / \mathrm{mL}$
1	10	1.9	17	0.53	<0.03
2	π	0.76	9.0	120	0.11
3	KO_{0}	0.91	10	3.1	0.17
4	OH^{N}	2.7	40	36	-
5a	117	2.8	9.2	160	1.5

${ }^{a} \mathrm{IC}_{50}$ values are calculated with one experiment performed in duplicate, with a standard deviation of 3 -fold. ${ }^{b}$ The solubility was determined by the addition of 10 mM DMSO solution of the test compound to JP2 until opalescence. ${ }^{{ }^{c} \text { Inhibitory activity of MCH- }}$ stimulated arachidonic acid (AA) release.
contrast, compounds 2 and 5a exhibited less potency for 5HT2c receptor with submicromolar IC_{50} values. Although the 3,7-substituted quinoline derivative $\mathbf{5 a}$ showed less potent affinity for MCHR1 than 2, the quinoline scaffold was selected for further optimization in the view of potential increased absorption in the intestine by good solubility in aqueous solution (JP2 solution).

The previous study revealed that small lipophilic groups (X) at the 4 '-position of the terminal phenyl ring were important for potential activity. ${ }^{2}$ The 4 'substituent (X) selected from hydrogen, methoxy, fluoro, methyl, and chloro groups on the
terminal phenyl ring was investigated for 3,7-substituted quinoline derivatives 5 to evaluate the affinity of MCHR1 as well as $5-\mathrm{HT} 2 \mathrm{c}$ receptor. In addition, the replacement of the Aring of the biphenyl moiety with a more hydrophilic ring such as pyridine or piperidine was also examined with the goal of achieving high solubility while retaining potency against MCHR1 and selectivity against 5-HT2c. The results of in vitro activities are summarized in Table 2. Incorporation of a

Table 2. In Vitro Binding Affinity and Antagonist Activity of Quinoline Derivatives $5 \mathbf{b}-\mathbf{o}^{\boldsymbol{a}}$

Compd.			

${ }^{a} \mathrm{IC}_{50}$ values are calculated with one experiment performed in duplicate, with a standard deviation of 3 -fold. ${ }^{b}$ Inhibitory activity of MCH-stimulated arachidonic acid (AA) release.
chlorine atom into the terminal phenyl group tended to enhance the activity for MCHR1 as previously reported (cf. 5e vs $\mathbf{5 b}, \mathbf{5 j}$ vs $\mathbf{5 g}$, and $\mathbf{5 o}$ vs $\mathbf{5 1}$). Interestingly, the rank order of binding affinity for MCHR1 is the same in three series ($\mathrm{Cl}>$ $\mathrm{Me}>\mathrm{F}>\mathrm{OMe}>\mathrm{H}$). Next the A-ring was converted to a hydrophilic moiety with the aim of lowering the molecular lipophilicity and enhancing aqueous solubility. However, contrary to expectation, biphenyl ($\mathrm{A}=$ benzene) was more favorable than phenylpyridine ($\mathrm{A}=$ pyridine) and phenylpiperidine ($\mathrm{A}=$ piperidine) in binding affinities for MCHR1 (e.g., $\mathbf{5 e}$ vs $\mathbf{5 j} \mathbf{j} \mathbf{5 o}$). This result suggested that the lipophilicity of the A-ring should be important for the interaction with hydrophobic amino acid side chains of the receptor. Among these compounds, 4^{\prime}-chlorobiphenylcarboxamide 5 e exhibited the most potent affinity $\left(\mathrm{IC}_{50}=0.74 \mathrm{nM}\right)$ and effective antagonistic activity $\left(\mathrm{IC}_{50}=8.5 \mathrm{nM}\right)$. Moreover, the biphenylcarboxamides $5 \mathbf{5}-\mathrm{e}$ showed moderate submicromolar affinities for the $5-\mathrm{HT} 2 \mathrm{c}$ receptor, indicating good receptor selectivity compared to that of $1\left(\mathrm{IC}_{50}=0.53 \mathrm{nM}\right)$. On the basis of these results, the biphenylcarboxamide moiety was selected as the 7 -substituent on the quinoline ring.

Next we examined the effects of a 6 - or an 8 -substituent (R) on the quinoline ring (Table 3). Incorporation of a substituent into the 6 - or 8 -position should effectively stabilize the molecular conformation by steric hindrance or hydrogen bonding with the amide moiety and lead to variation in activity of the MCHR1 and 5-HT2c receptor. Introduction of a methyl, fluoro, or chloro moiety into the 6- or 8-position surprisingly increased the affinities for MCHR1 in spite of their possible conformational change, whereas the incorporation of a methoxy ($\mathbf{5 q}$) or ethyl ($\mathbf{5 r}$) group into the 8 -position decreased the affinities compared to that of the nonsubstituted analogue. In addition, compounds possessing nano- or subnanomolar MCHR1 affinities exhibited potent functional antagonism with an IC_{50} value of $2.3-12 \mathrm{nM}$. These results suggest that it is important to have a small lipophilic group such as methyl, fluoro, or chloro at the 6- or 8-position for both high binding affinity and antagonistic activity. As two different active conformations, A ($8-\mathrm{F}, 8-\mathrm{Me}$) and B ($6-\mathrm{F}, 6-\mathrm{Me}$), ${ }^{12}$ could be preferable as illustrated in Figure 1, the existence of a wide space in MCHR1 corresponding to a methylquinolinyl moiety was implicated. Concerning the binding affinity for the 5-HT2c receptor, a detailed SAR study of the 5-HT2c receptor binding by incorporation of a substituent at the 6 - or 8 -position unfortunately gave obscure results. However, we found that 8 methylquinolines $5 \mathbf{v}-\mathbf{z}$ were less potent than the other compounds and, intriguingly, 6 -methylquinoline 5 s was more potent than the other 6 -substituted compounds (e.g., 5 t and $\mathbf{5 u})$. In view of their potent affinity for MCHR1 ($\left.\mathrm{IC}_{50}<1 \mathrm{nM}\right)$ and excellent $5-\mathrm{HT} 2 \mathrm{c}$ receptor selectivity $\left(\mathrm{IC}_{50}>1000 \mathrm{nM}\right)$, the 8 -methyl-substituted compounds $5 \mathbf{v}, 5 \mathbf{x}$, and $5 \mathbf{z}$ were selected for further pharmacokinetic evaluation. Among them, compound 5v had favorable pharmacokinetic profiles in Fischer 344 (F344) rats as shown in Table 4.

In Vivo Studies. Compound 5v, which exhibited potent binding affinity $\left(\mathrm{IC}_{50}=1.7 \mathrm{nM}\right)$ for rMCHR 1 , was assessed for an anorectic effect in the DIO rat model. The results indicated that 5 v induced dose-dependent inhibition of food intake 17 h after administration that reached significance at $1 \mathrm{mg} / \mathrm{kg}$ (Figure 2). Moreover, the anorectic effect of $\mathbf{5 v}$ at $3 \mathrm{mg} / \mathrm{kg}$ was equipotent to the effect of the centrally acting antiobesity agent sibutramine $[1 \mathrm{mg} / \mathrm{kg}$, po (per os, orally) $]$. The pharmacokinetic study in F344 rats confirmed that $5 v$ is orally bioavailable and can penetrate the brain $\left[1 \mathrm{mg} / \mathrm{kg}\right.$, po; $C_{\text {max }}=610 \mathrm{ng} / \mathrm{g}$, $T_{\max }=8 \mathrm{~h}$, AUC $=9343 \mathrm{ng} \mathrm{h} / \mathrm{g}$ (brain)]. To clarify the selectivity of the anorectic property to MCHR1 antagonism, the effect of $5 \mathbf{v}$ on food intake in MCHR1-deficient mice and wild-type mice was examined. Compound $\mathbf{5 v}$ showed no effect on food intake of MCHR-deficient mice, while it significantly reduced food intake in wild-type mice in a dose-dependent manner (Figure 3). In addition, $\mathbf{5 v}$ showed negligible activity for other receptors, transporters, and enzymes (data not shown). These results indicate that 5 v is orally bioavailable and can penetrate the brain and that its anorectic effect results from its antagonistic activity for MCHR1. Although compound $5 \mathbf{v}$ appeared a favorable candidate for future studies, $5 \mathbf{v}$ was identified as a potent hERG K^{+}channel blocker.

CONCLUSION

We replaced the dihydronaphthalene nucleus of $\mathbf{1}$ with other cores to find a novel MCHR1 antagonist with improved receptor selectivity, especially for the 5-HT2c receptor. The SAR investigation revealed that the 3,7 -substituted 8 -methylquinoline core was an excellent scaffold compared with

Table 3. In Vitro Binding Affinity and Antagonist Activity of Quinoline Derivatives $5 \mathrm{p}-\mathrm{z}^{a}$

		hMCHR1			5-HT2c
compd	R	X	binding $\mathrm{IC}_{50}(\mathrm{nM})$	$\mathrm{AA} \mathrm{IC}_{50}{ }^{\text {b }}$ (nM)	binding $\mathrm{IC}_{50}(\mathrm{nM})$
5p	8-F	F	0.92	2.3	78
5q	8 -OMe	F	110		
5 r	8 -Et	F	100		>1000
5s	6-Me	F	1.3	10	7.4
5 t	6-F	F	1.4	8.4	280
5u	6-Cl	F	1.4	12	240
5v	$8-\mathrm{Me}$	F	0.54	2.8	>1000
5w	8-Me	H	1.8	7.0	760
5x	$8-\mathrm{Me}$	OMe	0.53	4.3	>1000
5y	8 -Me	Me	1.0	11	540
5 z	8 -Me	Cl	0.36	7.6	>1000

${ }^{a} \mathrm{IC}_{50}$ values are calculated with one experiment performed in duplicate, with a standard deviation of 3-fold. ${ }^{b}$ Inhibitory activity of MCH-stimulated arachidonic acid (AA) release.

Figure 1. Possible conformational change by introduction of a Me or F group at the 6 - or 8 -position in the quinoline scaffold.

Table 4. In Vivo Pharmacokinetic Profile of $5 \mathrm{v}^{\boldsymbol{a}}$

compd	$\begin{gathered} F^{b} \\ (\%) \end{gathered}$	iv ($0.3 \mathrm{mg} / \mathrm{kg}$)			po ($1 \mathrm{mg} / \mathrm{kg}$)		
		$\begin{gathered} \mathrm{CL}_{\text {total }}^{c} \\ (\mathrm{~L} / \mathrm{h} / \mathrm{kg}) \end{gathered}$	$\begin{aligned} & V_{\text {ss }}{ }^{d} \\ & (\mathrm{~L} / \\ & \mathrm{kg}) \end{aligned}$	$\begin{gathered} T_{1 / 2}^{e} \\ (\mathrm{~h}) \end{gathered}$	$\begin{aligned} & C_{\max }^{f} \\ & (\mathrm{ng} / \\ & \mathrm{mL}) \end{aligned}$		$\begin{gathered} \mathrm{AUC}^{h}(\mathrm{ng} \\ \mathrm{h} / \mathrm{mL}) \end{gathered}$
5v	39	2.4	20	7.7	9.0	4.0	160

${ }_{n}{ }_{n}=3$; F344 rats (male, 16 W). ${ }^{b}$ Rat bioavailability. ${ }^{c}$ Total clearance. ${ }^{d}$ Volume of distribution at the steady state. ${ }^{e}$ Half-life. ${ }^{{ }^{f}}$ Maximal plasma concentration. ${ }^{g}$ Time of maximal concentration. ${ }^{h}$ Area under the blood concentration time curve.
dihydronaphthalene in terms of the MCHR1 binding affinity, antagonistic activity, and receptor selectivity. We identified $\mathbf{5 v}$ as the potent nonpeptide MCHR1 antagonist. This compound exhibited subnanomolar binding affinity $\left(\mathrm{IC}_{50}=0.54 \mathrm{nM}\right)$ and potent antagonistic activity $\left(\mathrm{IC}_{50}=2.8 \mathrm{nM}\right)$ for MCHR1, while showing significantly reduced affinity for the $5-\mathrm{HT} 2 \mathrm{c}$ receptor $\left(\mathrm{IC}_{50}=1000 \mathrm{nM}\right)$. Oral administration of $5 \mathbf{v}$ significantly suppressed food intake in DIO rats and did not affect food
intake in MCHR1-deficient mice. A pharmacokinetic study confirmed that $5 \mathbf{v}$ was orally bioavailable and could penetrate the brain. These results showed that 5 v is a highly potent, orally active nonpeptide MCHR1 antagonist. Our medicinal chemistry efforts to identify potent MCHR1 antagonists without hERG-associated liabilities will be reported in due course.

EXPERIMENTAL SECTION

Melting points (mp's) were determined on a Yanagimoto micro melting point apparatus or Buchi melting point apparatus and are uncorrected. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on Varian Gemini-200 (200 MHz) and JEOL JNMLA300 (300 MHz) NMR spectrometers. Chemical shifts are reported in δ value (ppm) with tetramethylsilane as an internal standard. Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; dd, double doublet; br s, broad singlet; m, multiplet. Coupling constants (J) are reported in hertz. Elemental analyses (C, H, N) were carried out by Takeda Analytical Research Laboratories, Ltd., and the results were within 0.4% of theoretical values. Thin-layer chromatography (TLC) analyses were performed with silica gel $60 \mathrm{~F}_{254}$ plate (Merck, article no. 5715), alumina $60 \mathrm{~F}_{254}$ plates (type E) and NH

Figure 2. Effects of $5 \mathbf{v}(1,3,10 \mathrm{mg} / \mathrm{kg}$, po) and sibutramine $(3 \mathrm{mg} / \mathrm{kg}, \mathrm{po})$ on food intake in DIO-F344 rats. Cumulative food intake for 6 and 17 h was measured. Each value represents the mean $\pm \mathrm{SD}(n=6)$ Key: $\#, P<0.025$ in the Williams test; $*, P<0.05$ in the t test; ${ }^{* * *}, P<0.001$ in the t test.

		inhibition\%
WT	vehicle	-
	$\mathbf{5 v} 3 \mathrm{mg} / \mathrm{kg}$	$10.2 \%^{\#}$
	$\mathbf{5 v} 10 \mathrm{mg} / \mathrm{kg}$	$13.2 \%^{\#}$
KO	vehicle	-
	$\mathbf{5 v} 3 \mathrm{mg} / \mathrm{kg}$	4.1%
	$\mathbf{5 v ~} 10 \mathrm{mg} / \mathrm{kg}$	5.7%

Figure 3. Effects of $5 v$ on food intake in MCHR1-deficient mice and wild-type mice. The mice were given a high-fat diet. The cumulative food intake was measured for 2 days. Each value represents the mean \pm SD $(n=6)$. Key: \#, $P<0.025$ in the Williams test.

TLC plates (Fuji Silysia Chemical Ltd.). Chromatographic separations were performed with Merck aluminum oxide 90 (basic, activity III) and NH silica gel (Fuji Silysia Chemical Ltd.). Yields are unoptimized. The purities of all compounds tested in biological systems were assessed as being $>95 \%$ using elemental analysis.

6-(Methoxycarbonyl)naphthalene-2-carboxylic acid (7). To a solution of 2,6-naphthalenedicarboxylic acid dimethyl ester (6) (26.0 $\mathrm{g}, 0.106 \mathrm{~mol}$) in N, N-dimethylformamide (DMF) (500 mL) was added 1 M NaOH solution ($106 \mathrm{~mL}, 0.106 \mathrm{~mol}$) portionwise over 30 \min at $100^{\circ} \mathrm{C}$. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 3 h and concentrated in vacuo. Water was added to the residue, and insoluble solids were filtered off. To the filtrate was added concentrated HCl (8 mL), and the precipitates were filtered. The precipitates were washed with water and recrystallized from MeOH to give the title compound 7 $(14.6 \mathrm{~g}, 60 \%)$ as a white powder. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.94(3 \mathrm{H}$, s), $8.06(2 \mathrm{H}, \mathrm{m}), 8.24(2 \mathrm{H}, \mathrm{m}), 8.69(2 \mathrm{H}, \mathrm{s})$.
tert-Butyl 6-(Hydroxymethyl)-2-naphthylcarbamate (9). To a mixture of $7(5.00 \mathrm{~g}, 21.7 \mathrm{mmol})$, triethylamine ($3.93 \mathrm{~mL}, 28.2 \mathrm{mmol}$), and $t-\mathrm{BuOH}(65 \mathrm{~mL})$ was added diphenylphosphoryl azide $(5.62 \mathrm{~mL}$, 26.1 mmol), and the mixture was stirred at room temperature for 30 min and then at $100{ }^{\circ} \mathrm{C}$ for 6 h . Sodium bicarbonate solution was added to the reaction mixture, and extraction with EtOAc was performed. The extract was washed with 10% citric acid solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude tertbutyl 6-(methoxycarbonyl)-2-naphthylcarbamate (8) ($3.20 \mathrm{~g}, 49 \%$).

To an ice-cooled solution of crude $8(2.89 \mathrm{~g}, 9.59 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ was added lithium aluminum hydride $(728 \mathrm{mg}, 19.2 \mathrm{mmol})$,
and the mixture was stirred at room temperature for 3 h . To the reaction mixture was slowly added 10% citric acid solution, and extraction with EtOAc was performed. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on silica gel (toluene-EtOAc, 10:1) and crystallized from diisopropyl ether and hexane to give $9(2.26 \mathrm{~g}, 78 \%)$ as a white powder. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.51(9 \mathrm{H}, \mathrm{s}), 4.61(2 \mathrm{H}, \mathrm{d}, J=5.7$ $\mathrm{Hz}), 5.24(1 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.49(1 \mathrm{H}, \mathrm{m})$, $7.70-7.78(3 \mathrm{H}, \mathrm{m}), 8.07(1 \mathrm{H}, \mathrm{s}), 9.52(1 \mathrm{H}, \mathrm{s})$.
tert-Butyl 6-(Pyrrolidinylmethyl)-2-naphthylcarbamate (10). To an ice-cooled mixture of $9(500 \mathrm{mg}, 1.83 \mathrm{mmol})$, triethylamine $(0.254 \mathrm{~mL}, 1.83 \mathrm{mmol})$, and THF (9 mL) was added methanesulfonyl chloride ($0.142 \mathrm{~mL}, 1.83 \mathrm{mmol}$), and the mixture was stirred at room temperature for 30 min . The reaction mixture was filtered, and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a colorless oil. To a mixture of the crude mesylate, $\mathrm{K}_{2} \mathrm{CO}_{3}(758 \mathrm{mg}, 5.49$ $\mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(9 \mathrm{~mL})$ was added pyrrolidine $(0.153 \mathrm{~mL}, 1.83$ mmol), and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h . Water was added to the reaction mixture, and extraction with EtOAc was performed. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on silica gel (EtOAc) to give 10 (388 mg, 65\%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.55(9 \mathrm{H}, \mathrm{s}), 1.80(4 \mathrm{H}, \mathrm{m}), 2.55(4 \mathrm{H}, \mathrm{m}), 3.74(2 \mathrm{H}, \mathrm{s})$, $6.62(1 \mathrm{H}, \mathrm{s}), 7.30(1 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{m}), 7.69(3 \mathrm{H}, \mathrm{m}), 7.96(1 \mathrm{H}, \mathrm{s})$.

4'-Fluoro-N-[6-(1-pyrrolidinylmethyl)-2-naphthyl][1,1'-bi-phenyl]-4-carboxamide (2). A mixture of $10(387 \mathrm{mg}, 1.19 \mathrm{mmol})$ and trifluoroacetic acid (TFA) (6 mL) was stirred at room
temperature for 1 h and concentrated in vacuo. Aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution was added to the residue, and extraction with EtOAc was performed. The extract was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was solidified with hexane to afford 6-(pyrrolidin-1-ylmethyl)naphthalen-2-ylamine ($242 \mathrm{mg}, 90 \%$). To an ice-cooled mixture of the obtained amine ($100 \mathrm{mg}, 0.442 \mathrm{mmol}$), 4'fluorobiphenylcarboxylic acid ($95.5 \mathrm{mg}, 0.442 \mathrm{mmol}$), and 4(dimethylamino) pyridine ($54.0 \mathrm{mg}, 0.442 \mathrm{mmol}$) in DMF $(2 \mathrm{~mL})$ was added $\mathrm{EDC} \cdot \mathrm{HCl}(84.7 \mathrm{mg}, 0.442 \mathrm{mmol})$, and the mixture was stirred at room temperature for 16 h . Aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution was added to the reaction mixture, and extraction with EtOAc was performed. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on alumina with EtOAc and crystallized from EtOAc-diisopropyl ether to give title compound $2(121 \mathrm{mg}, 64 \%)$ as a white powder. $\mathrm{Mp}: 218-220^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.71(4 \mathrm{H}, \mathrm{m}), 2.47(4 \mathrm{H}, \mathrm{m}), 3.72(2 \mathrm{H}, \mathrm{s})$, $7.35(2 \mathrm{H}, \mathrm{m}), 7.46(1 \mathrm{H}, \mathrm{m}), 7.75-7.90(8 \mathrm{H}, \mathrm{m}), 8.11(2 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 8.45(1 \mathrm{H}, \mathrm{s}), 10.47(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}: \mathrm{C}$, 79.22; H, 5.94; N, 6.60. Found: C, 79.02; H, 6.08; N, 6.63.

Ethyl 3-[3-(Acetylamino)phenoxy]propionate (12). To a mixture of 3-hydroxyacetoanilide (11) ($25.0 \mathrm{~g}, 0.165 \mathrm{~mol}$) and ethyl acrylate $(50 \mathrm{~mL})$ was added Triton B (40% methanol solution, 3.46 $\mathrm{mL}, 8.37 \mathrm{mmol}$), and the reaction mixture was heated at reflux for 2 days. The reaction mixture was concentrated in vacuo. The residue was chromatographed on alumina (EtOAc-hexane, 1:1) and solidified with EtOAc and hexane to give $12(17.6 \mathrm{~g}, 43 \%)$ as a white powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.27(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 2.16(3 \mathrm{H}, \mathrm{s}), 2.77(2 \mathrm{H}$, $\mathrm{t}, J=6.4 \mathrm{~Hz}), 4.15-4.26(4 \mathrm{H}, \mathrm{m}), 6.65(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.97(1 \mathrm{H}$, $\mathrm{d}, J=7.8 \mathrm{~Hz}), 7.16-7.22(1 \mathrm{H}, \mathrm{m}), 7.26(1 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{br} s)$.

3-[3-(Acetylamino)phenoxy]propionic Acid (13). A mixture of $12(3.82 \mathrm{~g}, 15.1 \mathrm{mmol}), 5 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$, and $\mathrm{AcOH}(15 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 4 h and concentrated in vacuo. Water was added to the residue, and extraction with EtOAc was performed. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was solidified from EtOAc and hexane to give $13(3.10 \mathrm{~g}$, 92%) as a white powder. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.01(3 \mathrm{H}, \mathrm{s}), 2.65-$ $2.68(2 \mathrm{H}, \mathrm{m}), 4.07-4.11(2 \mathrm{H}, \mathrm{m}), 6.58(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.07-7.18$ $(3 \mathrm{H}, \mathrm{m}), 7.29(1 \mathrm{H}, \mathrm{s}), 9.96(1 \mathrm{H}, \mathrm{s})$.

N -(4-Oxo-3,4-dihydro-2H-chromen-7-yl)acetamide (14). To a solution of $13(1.28 \mathrm{~g}, 5.73 \mathrm{mmol})$ in nitroethane $(15 \mathrm{~mL})$ was added thionyl chloride $(0.82 \mathrm{~g}, 6.88 \mathrm{mmol})$ in one portion, and the reaction mixture was stirred at room temperature for 2 h . The reaction mixture was cooled to $5{ }^{\circ} \mathrm{C}$ with an ice bath, then anhydrous aluminum chloride ($2.29 \mathrm{~g}, 17.2 \mathrm{mmol}$) was added, and the reaction mixture was warmed to room temperature and stirred for 30 min . Water was added to the reaction mixture, and extraction with EtOAc was performed. The extract was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on alumina, eluting with EtOAc , and solidified from EtOAc and hexane to give 14 $(820 \mathrm{mg}, 70 \%)$ as a white powder. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.21(3 \mathrm{H}, \mathrm{s})$, $2.78(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 4.52(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{dd}, J=2.0$, $8.4 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{s}), 7.53(1 \mathrm{H}, \mathrm{br}$ s), $7.84(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$.

N -[3-[(Dimethylamino)methylidene]-4-oxo-3,4-dihydro-2H-chromen-7-yl]acetamide (15). A mixture of $14(810 \mathrm{mg}, 3.95$ $\mathrm{mmol})$ and dimethylformamide dimethyl acetal $(20 \mathrm{~mL})$ was stirred at $130{ }^{\circ} \mathrm{C}$ for 4 h and concentrated in vacuo. A solution of EtOAc and hexane (1:1) was added to the residue, and the precipitates were collected and washed with diisopropyl ether to give 15 ($850 \mathrm{mg}, 83 \%$) as a yellow powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.04(3 \mathrm{H}, \mathrm{s}), 3.10(6 \mathrm{H}, \mathrm{s})$, $5.52(2 \mathrm{H}, \mathrm{s}), 6.44(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{dd}, J=2.4,8.4 \mathrm{~Hz})$, $7.51(1 \mathrm{H}, \mathrm{s}), 7.58(1 \mathrm{H}, \mathrm{s}), 7.86(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$.

3-(Pyrrolidin-1-ylmethyl)-2H-chromen-7-ylamine (16). A solution of $15(2.00 \mathrm{~g}, 7.68 \mathrm{mmol})$ in pyrrolidine $(20 \mathrm{~mL})$ was heated at $100{ }^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was concentrated in vacuo, and the residue was solidified with water. The resulting solid was collected and dried. The crude solid was suspended with EtOAc, collected, and washed with the same solvent. To an ice-cooled mixture of the obtained solid, $\mathrm{AcOH}(3.5 \mathrm{~mL})$, and 2-PrOH $(7.1 \mathrm{~mL})$ was slowly added $\mathrm{NaBH}_{4}(809 \mathrm{mg}, 21.4 \mathrm{mmol})$, and the mixture was stirred for 3 h at room temperature. The reaction mixture was quenched with 1 M
$\mathrm{HCl}(24.9 \mathrm{~mL})$ below $10^{\circ} \mathrm{C}$ and then neutralized with 4 M NaOH . The aqueous solution was subjected to extraction with EtOAc, and the extract was washed with brine, dried over MgSO_{4}, and concentrated in vacuo to give N -[4-hydroxy-3-(pyrrolidin-1-ylmethyl)-3,4-dihydro- 2 H -chromen-7-yl]acetamide as an oil. A mixture of the obtained oil and 6 $\mathrm{N} \mathrm{HCl}(20 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 3 h . After cooling, the reaction mixture was neutralized with 4 M NaOH , and the solution was subjected to extraction with EtOAc. The extract was concentrated in vacuo, and the residue was chromatographed on NH-silica gel (EtOAc-hexane, 1:1) to give $16(449 \mathrm{mg}, 54 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.73-1.78(4 \mathrm{H}, \mathrm{m}), 2.46-2.49(4 \mathrm{H}, \mathrm{m}), 3.11$ $(3 \mathrm{H}, \mathrm{s}), 3.65(2 \mathrm{H}, \mathrm{br}$ s $), 4.74(2 \mathrm{H}, \mathrm{s}), 6.15-6.22(3 \mathrm{H}, \mathrm{m}), 6.75(1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}$).

4'-Fluoro- N -[3-(1-pyrrolidinylmethyl)-2H-chromen-7-yl]-biphenyl-4-carboxamide (3). To a mixture of $16(70.0 \mathrm{mg}, 0.304$ mmol), 4'-fluorobiphenylcarboxylic acid $(65.7 \mathrm{mg}, 0.304 \mathrm{mmol})$, 4(dimethylamino)pyridine ($37.1 \mathrm{mg}, 0.304 \mathrm{mmol}$), and 1-hydroxybenzotriazole ($46.5 \mathrm{mg}, 0.304 \mathrm{mmol}$) in DMF (1.4 mL) was added $\mathrm{EDC} \cdot \mathrm{HCl}(58.3 \mathrm{mg}, 0.304 \mathrm{mmol})$, and the reaction mixture was stirred at room temperature for 16 h . The reaction mixture was diluted with EtOAc , washed with $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution and brine, and concentrated in vacuo. The residue was chromatographed on NH -silica gel, eluting with EtOAc. The resulting solid was triturated with diisopropyl ether to give $3(82.3 \mathrm{mg}, 63 \%)$ as a yellow powder. Mp : $186-187^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.57-1.59(4 \mathrm{H}, \mathrm{m}), 1.748-1.80(4 \mathrm{H}, \mathrm{m}), 3.15(2 \mathrm{H}$, s), $4.81(2 \mathrm{H}, \mathrm{s}), 6.30(1 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.12-7.21(4 \mathrm{H}$, $\mathrm{m}), 7.57-7.60(2 \mathrm{H}, \mathrm{m}), 7.65(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{s}), 7.92$ $(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{2}$: C, $75.68 ; \mathrm{H}, 5.88$; N, 6.54; F, 4.43. Found: C, 75.05; H, 5.84; N, 6.48.

N -(2-Methyl-6-quinolinyl)acetamide (18). To a solution of 6 -methyl-2-aminoquinoline (17) (1.02 g, 6.45 mmol$)$ in pyridine (30 mL) was added acetic anhydride ($0.913 \mathrm{~mL}, 9.67 \mathrm{mmol}$) in one portion. The reaction mixture was stirred at room temperature for 3 h and concentrated in vacuo. Diisopropyl ether was added to the residue, and the precipitates were filtered and washed with the same solvent to give $18(1.20 \mathrm{~g}, 93 \%)$ as a white powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.22$ $(3 \mathrm{H}, \mathrm{s}), 2.71(3 \mathrm{H}, \mathrm{s}), 7.25(1 \mathrm{H}, \mathrm{m}), 7.52(1 \mathrm{H}, \mathrm{m}), 7.95(2 \mathrm{H}, \mathrm{m}), 8.10$ $(1 \mathrm{H}, \mathrm{s}), 8.30(1 \mathrm{H}, \mathrm{s})$.

N -(2-Methyl-1-oxide-6-quinolinyl)acetamide (19). To a solution of $18(1.20 \mathrm{~g}, 5.99 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ was added m chloroperbenzoic acid $(2.48 \mathrm{~g}, 7.19 \mathrm{mmol})$ in one portion. The reaction mixture was stirred at room temperature for 3 h and concentrated in vacuo. EtOAc was added to the residue, and the precipitates were collected and washed with the same solvent to give $19(1.06 \mathrm{~g}, 82 \%)$ as a white powder. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.12$ $(3 \mathrm{H}, \mathrm{s}), 2.53(3 \mathrm{H}, \mathrm{s}), 7.51(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{m}), 8.40$ $(1 \mathrm{H}, \mathrm{s}), 8.48(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 10.36(1 \mathrm{H}, \mathrm{s})$.

N -[2-(Hydroxymethyl)-6-quinolinyl]acetamide (20). A mixture of $19(4.64 \mathrm{~g}, 21.5 \mathrm{mmol})$ and acetic anhydride $(110 \mathrm{~mL})$ was stirred at $80{ }^{\circ} \mathrm{C}$ for 4 h and concentrated in vacuo. The residue was chromatographed on alumina, eluting with EtOAc, to give a colorless oil. To an ice-cooled solution of the acetate in $\mathrm{MeOH}(110 \mathrm{~mL})$ was added 1 M NaOH solution $(21.5 \mathrm{~mL}, 21.5 \mathrm{mmol})$, and the mixture was stirred at room temperature for 1 h and concentrated in vacuo. The residue was diluted with EtOAc, and the solution was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was chromatographed on alumina (EtOAc-MeOH, 5:1) and solidified with EtOAc -diisopropyl ether to give $20(2.65 \mathrm{~g}, 57 \%)$ as a white powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 2.23(3 \mathrm{H}, \mathrm{s}), 4.89(2 \mathrm{H}, \mathrm{s}), 7.68(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.78(1 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 8.27(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 8.33(1 \mathrm{H}$, s).
N-[2-(1-Pyrrolidinylmethyl)-6-quinolinyl]acetamide (21). To an ice-cooled mixture of $20(1.00 \mathrm{~g}, 4.62 \mathrm{mmol})$ and triethylamine $(0.708 \mathrm{~mL}, 5.09 \mathrm{mmol})$ in DMF $(23 \mathrm{~mL})$ was added methanesulfonyl chloride ($0.394 \mathrm{~mL}, 5.09 \mathrm{mmol}$), and the mixture was stirred for 30 min. Pyrrolidine $(0.772 \mathrm{~mL}, 9.25 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.92 \mathrm{~g}, 13.9$ mmol) were added to the reaction mixture, and the mixture was stirred for $60^{\circ} \mathrm{C}$ for 16 h . Aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution was added to the reaction mixture, and extraction with EtOAc was performed. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The
residue was chromatographed on silica gel, eluting with EtOAc, and solidified with diisopropyl ether and hexane to give 21 ($558 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.85(4 \mathrm{H}, \mathrm{m}), 2.24(3 \mathrm{H}, \mathrm{s}), 2.70(4 \mathrm{H}, \mathrm{m}), 3.99$ $(2 \mathrm{H}, \mathrm{s}), 7.58(2 \mathrm{H}, \mathrm{m}), 7.80(1 \mathrm{H}, \mathrm{s}), 7.98(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 8.07$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.29(1 \mathrm{H}, \mathrm{s})$.
4^{\prime}-Fluoro- N-[2- (1-pyrrolidinylmethyl)-6-quinolinyl][1,1'-bi-phenyl]-4-carboxamide (4). A mixture of 21 ($530 \mathrm{mg}, 1.97$ $\mathrm{mmol})$ and concentrated $\mathrm{HCl}(10 \mathrm{~mL})$ was stirred at $110^{\circ} \mathrm{C}$ for 2 h and concentrated in vacuo. Aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution was added to the reaction mixture, and extraction with EtOAc was performed. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude 2-[(dimethylamino)methyl]quinolin-6-ylamine as a colorless oil (447 mg , quantitative). To an ice-cooled mixture of the oil ($334 \mathrm{mg}, 1.47 \mathrm{mmol}$), 4'-fluorobiphenylcarboxylic acid (349 mg , 1.62 mmol), and 4-(dimethylamino)pyridine ($180 \mathrm{mg}, 1.47 \mathrm{mmol}$) in DMF (7 mL) was added EDC• $\mathrm{HCl}(310 \mathrm{mg}, 1.62 \mathrm{mmol})$, and the mixture was stirred at room temperature for 16 h . Aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution was added to the reaction mixture, and extraction with EtOAc was performed. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on alumina (EtOAc) and crystallized from EtOAc and diisopropyl ether to give 4 ($424 \mathrm{mg}, 68 \%$) as white crystals. Mp: 190$193{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.76(4 \mathrm{H}, \mathrm{m}), 2.61(4 \mathrm{H}, \mathrm{m}), 3.94$ $(2 \mathrm{H}, \mathrm{s}), 7.36(2 \mathrm{H}, \mathrm{m}), 7.59(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.87(4 \mathrm{H}, \mathrm{m}), 7.99-$ $8.14(4 \mathrm{H}, \mathrm{m}), 8.30(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.54(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 10.61$ $(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 75.26 ; \mathrm{H}, 5.75$; N, 9.79. Found: C, 75.22; H, 5.72; N, 9.83.
N-[3-(Hydroxymethyl)-7-quinolinyl]acetamide (26). A solution of N-(3-aminophenyl)acetamide (22) $(5.34 \mathrm{~g}, 35.6 \mathrm{mmol})$ and vinamidinium bis(tetrafluoroborate) ($38.1 \mathrm{~g}, 107 \mathrm{mmol}$) in ethanol $(370 \mathrm{~mL})$ was heated at reflux for 1 day. After the solution was cooled to room temperature, the solvent was removed by rotary evaporation. Tetrahydrofuran $(185 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(185 \mathrm{~mL})$ were added to the residue, and the mixture was stirred at room temperature for 4 h . The reaction mixture was neutralized with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution, and extraction with EtOAc was performed. The extract was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on alumina, eluting with EtOAc, to give 5.68 g of N -(3-formylquinolin-7-yl)acetamide as a powder. To an ice-cooled solution of the above product ($5.68 \mathrm{~g}, 26.5 \mathrm{mmol}$) in ethanol (60 mL) was slowly added sodium borohydride $(2.01 \mathrm{~g}, 53.0 \mathrm{mmol})$, and the reaction mixture was stirred at room temperature for 3 h . Water was added to the mixture, and the solution was subjected to extraction with EtOAc. The extract was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was solidified with EtOAc to give $26(4.47 \mathrm{~g}, 78 \%)$ as a white powder. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.12$ $(3 \mathrm{H}, \mathrm{s}), 4.67(2 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 5.40(1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}), 7.67(1 \mathrm{H}$, dd, $J=1.8,9.0 \mathrm{~Hz}), 7.88(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{s}), 8.39(1 \mathrm{H}$, s), $8.78(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 10.27(1 \mathrm{H}, \mathrm{s})$.

N -[8-Fluoro-3-(hydroxymethyl)-7-quinolinyl]acetamide (27). Compound 27 was prepared in the same manner as described for 26. Yield: $77 \% .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.16(3 \mathrm{H}, \mathrm{s}), 4.72(2 \mathrm{H}, \mathrm{s}), 5.52$ $(1 \mathrm{H}, \mathrm{s}), 7.76(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{m}), 8.25(1 \mathrm{H}, \mathrm{s}), 8.87$ ($1 \mathrm{H}, \mathrm{s}$), $10.11(1 \mathrm{H}, \mathrm{s})$.
N-[6-Fluoro-3-(hydroxymethyl)-7-quinolinyl]acetamide (28). Compound 28 was prepared in the same manner as described for 26. Yield: $15 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right): \delta 2.18(3 \mathrm{H}, \mathrm{s}), 4.69(2 \mathrm{H}, \mathrm{d}, J=5.6$ $\mathrm{Hz}), 5.44(1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 7.83(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{s})$, $8.67(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.78(1 \mathrm{H}, \mathrm{s}), 9.98(1 \mathrm{H}, \mathrm{s})$.

N -[6-Chloro-3-(hydroxymethyl)-7-quinolinyl]acetamide (29). Compound 29 was prepared in the same manner as described for 26. Yield: $69 \% .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.12(3 \mathrm{H}, \mathrm{s}), 7.42(1 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}), 4.66(2 \mathrm{H}, \mathrm{s}), 7.56(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{s}), 9.48(1 \mathrm{H}, \mathrm{s})$, $9.63(1 \mathrm{H}, \mathrm{s}), 9.81(1 \mathrm{H}, \mathrm{s})$.
N-[3-(Chloromethyl)-7-quinolinyl]acetamide Hydrochloride (30). A mixture of $26(4.47 \mathrm{~g}, 20.7 \mathrm{mmol})$ in thionyl chloride (60 mL) was stirred at room temperature for 2 h and concentrated in vacuo. The resulting precipitates were collected and washed with diisopropyl ether to give $30(5.55 \mathrm{~g}, 99 \%)$ as a powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 2.27(3 \mathrm{H}, \mathrm{s}), 5.02(2 \mathrm{H}, \mathrm{s}), 7.82(1 \mathrm{H}, \mathrm{dd}, J=1.8,9.0 \mathrm{~Hz})$,
$8.27(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 9.03(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 9.14(1 \mathrm{H}, \mathrm{s}), 9.20$ $(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$.
N-[3-(Chloromethyl)-8-fluoro-7-quinolinyl]acetamide $\mathbf{H y}$ drochloride (31). Compound 31 was prepared in the same manner as described for 30. Yield: quantitative. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.25$ $(3 \mathrm{H}, \mathrm{s}), 4.90(2 \mathrm{H}, \mathrm{s}), 7.74(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 8.26(1 \mathrm{H}, \mathrm{m}), 8.40$ $(1 \mathrm{H}, \mathrm{s}), 8.91(1 \mathrm{H}, \mathrm{s})$.
N-[3-(Chloromethyl)-6-fluoro-7-quinolinyl]acetamide Hy drochloride (32). Compound 32 was prepared in the same manner as described for 30 . Yield: 88%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 2.33(3 \mathrm{H}, \mathrm{s})$, $5.02(2 \mathrm{H}, \mathrm{s}), 8.13(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 9.11(1 \mathrm{H}, \mathrm{s}), 9.22(1 \mathrm{H}, \mathrm{d}, J=$ $2.0 \mathrm{~Hz}), 9.35(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz})$.

N-[6-Chloro-3-(chloromethyl)-7-quinolinyl]acetamide Hy drochloride (33). Compound 33 was prepared in the same manner as described for 30. Yield: quantitative. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.22$ $(3 \mathrm{H}, \mathrm{s}), 5.02(2 \mathrm{H}, \mathrm{s}), 8.32(1 \mathrm{H}, \mathrm{s}), 8.50(1 \mathrm{H}, \mathrm{s}), 8.61(1 \mathrm{H}, \mathrm{s}), 9.02$ $(1 \mathrm{H}, \mathrm{s}), 9.78(1 \mathrm{H}, \mathrm{s})$.
N-[3-(Pyrrolidinylmethyl)-7-quinolinyl]acetamide (34). A mixture of $30(4.00 \mathrm{~g}, 14.8 \mathrm{mmol})$, pyrrolidine $(6.16 \mathrm{~mL}, 73.8$ $\mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.12 \mathrm{~g}, 44.3 \mathrm{mmol})$ in DMF (40 mL) was heated at $80{ }^{\circ} \mathrm{C}$ for 2 h . Water was added to the reaction mixture, and extraction with EtOAc was performed. The extract was washed with brine, dried over MgSO_{4}, and concentrated in vacuo to give $34(3.97 \mathrm{~g}$, quantitative) as an oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.81(4 \mathrm{H}, \mathrm{m}), 2.24(3 \mathrm{H}$, s), $2.56(4 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{s}), 7.74(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{s})$, $7.93(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.99-8.09(2 \mathrm{H}, \mathrm{m}), 8.85(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz})$.

N-[8-Fluoro-3-(1-pyrrolidinylmethyl)-7-quinolinyl]acetamide (35). Compound 35 was prepared in the same manner as described for 34. Yield: quantitative. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.82(4 \mathrm{H}$, $\mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.56(4 \mathrm{H}, \mathrm{m}), 3.80(2 \mathrm{H}, \mathrm{s}), 7.58(1 \mathrm{H}, \mathrm{dd}, J=1.5,9.0$ $\mathrm{Hz}), 8.07(1 \mathrm{H}, \mathrm{s}), 8.57(1 \mathrm{H}, \mathrm{m}), 8.90(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz})$.
\boldsymbol{N}-[6-Fluoro-3-(1-pyrrolidinylmethyl)-7-quinolinyl]acetamide (36). Compound 36 was prepared in the same manner as described for 34. Yield: quantitative. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.85(4 \mathrm{H}$, m), $2.30(3 \mathrm{H}, \mathrm{s}), 2.67(4 \mathrm{H}, \mathrm{m}), 3.87(2 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}$, $\mathrm{d}, J=11.4 \mathrm{~Hz}), 7.84(1 \mathrm{H}, \mathrm{br}$ s), $8.04(1 \mathrm{H}, \mathrm{s}), 8.83(1 \mathrm{H}, \mathrm{s})$.
\boldsymbol{N}-[6-Chloro-3-(1-pyrrolidinylmethyl)-7-quinolinyl]acetamide (37). Compound 37 was prepared in the same manner as described for 34 . Yield: 28%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.81(4 \mathrm{H}, \mathrm{m}), 2.30$ $(3 \mathrm{H}, \mathrm{s}), 2.55(4 \mathrm{H}, \mathrm{m}), 3.77(2 \mathrm{H}, \mathrm{s}), 7.08(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.80$ $(1 \mathrm{H}, \mathrm{br} s), 7.82(1 \mathrm{H}, \mathrm{s}), 7.93(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 8.86(1 \mathrm{H}, \mathrm{d}, J=2.2$ Hz).

3-(1-Pyrrolidinylmethyl)-7-quinolinylamine Hydrochloride (38). A solution of $34(3.97 \mathrm{~g}, 14.8 \mathrm{mmol})$ in concentrated HCl $(40 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for 1 h , and the mixture was cooled to room temperature. The solution was poured into aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution, and the resulting solution was subjected to extraction with EtOAc. The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuo, and the residue was chromatographed on alumina, eluting with EtOAc. The oil was converted to monohydrochloride salt using $4 \mathrm{M} \mathrm{HCl}-E t O A c$ to give $38(3.70 \mathrm{~g}, 95 \%)$ as a powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 2.11(4 \mathrm{H}, \mathrm{m})$, $3.40(4 \mathrm{H}, \mathrm{m}), 4.54(2 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{dd}, J$ $=9.0,2.1 \mathrm{~Hz}), 7.78(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 8.46(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 8.74$ $(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}$).

8-Fluoro-3-(1-pyrrolidinylmethyl)-7-quinolinylamine (39). Compound 39 was prepared in the same manner as described for 38. Yield: $36 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.80(4 \mathrm{H}, \mathrm{m}), 2.55(4 \mathrm{H}, \mathrm{m})$, $3.75(2 \mathrm{H}, \mathrm{s}), 4.11(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{m}), 7.40(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz})$, $7.96(1 \mathrm{H}, \mathrm{m}), 8.80(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz})$.

6-Fluoro-3-(1-pyrrolidinylmethyl)-7-quinolinylamine (40). Compound 40 was prepared in the same manner as described for 38. Yield: $82 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.80(4 \mathrm{H}, \mathrm{m}), 2.52(4 \mathrm{H}, \mathrm{m})$, $3.73(2 \mathrm{H}, \mathrm{s}), 4.24(2 \mathrm{H}, \mathrm{br}$ s), $7.32(2 \mathrm{H}, \mathrm{m}), 7.89(1 \mathrm{H}, \mathrm{s}), 8.69(1 \mathrm{H}, \mathrm{d}$, $J=1.5 \mathrm{~Hz}$).

6-Chloro-3-(1-pyrrolidinylmethyl)-7-quinolinylamine (41). Compound 41 was prepared in the same manner as described for 38. Yield: $46 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.80(4 \mathrm{H}, \mathrm{m}), 2.54(4 \mathrm{H}, \mathrm{m})$, $3.72(2 \mathrm{H}, \mathrm{s}), 4.42(2 \mathrm{H}, \mathrm{br}$ s), $7.32(1 \mathrm{H}, \mathrm{s}), 7.74(1 \mathrm{H}, \mathrm{s}), 7.85(1 \mathrm{H}, \mathrm{m})$, $8.72(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz})$.

4-Bromo- N-[8-fluoro-3-(1-pyrrolidinylmethyl)-7-quinolinyl]benzamide (42). To a solution of $39(1.31 \mathrm{~g}, 5.30 \mathrm{mmol})$ in DMA $(26.6 \mathrm{~mL})$ was added 4-bromobenzoyl chloride ($1.29 \mathrm{~g}, 5.90 \mathrm{mmol}$), and the reaction mixture was stirred for 5 h . The solution was poured into aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution, and the resulting solution was subjected to extraction with EtOAc The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuo, and the residue was chromatographed on NH-silica gel, eluting with EtOAc, to give 42 $(1.82 \mathrm{~g}, 80.0 \%)$ as a powder. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.73(4 \mathrm{H}, \mathrm{m})$, $2.51(4 \mathrm{H}, \mathrm{m}), 3.81(2 \mathrm{H}, \mathrm{s}), 7.75-7.83(4 \mathrm{H}, \mathrm{m}), 7.98(2 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 8.30(1 \mathrm{H}, \mathrm{s}), 8.90(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 10.54(1 \mathrm{H}, \mathrm{s})$.

4-Bromo- N-[6-fluoro-3-(1-pyrrolidinylmethyl)-7-quinolinyl]benzamide (43). Compound 43 was prepared in the same manner as described for 42. Yield: 38%. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.73$ ($4 \mathrm{H}, \mathrm{m}$), $2.50(4 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{s}), 7.78(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{d}, J=$ $11.1 \mathrm{~Hz}), 7.95(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{s}), 8.33(1 \mathrm{H}, \mathrm{d}, J=7.5$ $\mathrm{Hz}), 8.82(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 10.47(1 \mathrm{H}, \mathrm{s})$.

4-Bromo- N -[6-chloro-3-(1-pyrrolidinylmethyl)-7-quinolinyl]benzamide (44). Compound 44 was prepared in the same manner as described for 42. Yield: $64 \% .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.73(4 \mathrm{H}, \mathrm{m})$, $2.50(4 \mathrm{H}, \mathrm{m}), 3.80(2 \mathrm{H}, \mathrm{s}), 1.98(2 \mathrm{H}, \mathrm{s}), 7.46(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.63$ $(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 8.26(3 \mathrm{H}, \mathrm{m}), 8.88(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 10.37(1 \mathrm{H}$, s).

N-[3-(1-PyrrolidinyImethyl)-7-quinolinyl][1,1'-biphenyl]-4carboxamide (5b). To a solution of $38(150 \mathrm{mg}, 0.569 \mathrm{mmol})$, [1,1'-biphenyl]-4-carboxylic acid ($124 \mathrm{mg}, 0.626 \mathrm{mmol}$), 4(dimethylamino)pyridine ($70 \mathrm{mg}, 0.569 \mathrm{mmol}$), and triethylamine ($79.1 \mathrm{~mL}, 0.569 \mathrm{mmol}$) in DMF (3 mL) was added EDC•HCl (120 $\mathrm{mg}, 0.626 \mathrm{mmol}$) with ice-bath cooling, and the mixture was stirred at room temperature for 16 h . The suspension was diluted with EtOAc, and the solution was washed with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuo, and the residue was chromatographed on alumina, eluting with EtOAc, and crystallized from EtOAc and diisopropyl ether to give $\mathbf{5 b}(61.5 \mathrm{mg}, 26.5 \%)$ as a powder. Mp: $192-194{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.73(4 \mathrm{H}, \mathrm{m})$, $2.50(4 \mathrm{H}, \mathrm{m}), 3.77(2 \mathrm{H}, \mathrm{s}), 7.44(1 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{m}), 7.78(2 \mathrm{H}, \mathrm{d}, J$ $=6.9 \mathrm{~Hz}), 7.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.96(2 \mathrm{H}, \mathrm{m}), 8.14(3 \mathrm{H}, \mathrm{m}), 8.59$ $(1 \mathrm{H}, \mathrm{s}), 8.81(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 10.61(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O} \cdot 0.9 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 77.86 ; \mathrm{H}, 6.29$; N, 10.09. Found: C, 77.96 ; H, 6.30; N, 10.21.

4'-Fluoro- N-[3-(1-pyrrolidinylmethyl)-7-quinolinyl][1,1'-bi-phenyl]-4-carboxamide (5a). Compound 5 a was prepared in the same manner as described for $\mathbf{5 b}$. Yield: 42%. Mp: $210-212{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.72(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.77(2 \mathrm{H}, \mathrm{s}), 7.35$ $(2 \mathrm{H}, \mathrm{m}), 7.85(4 \mathrm{H}, \mathrm{m}), 7.97(2 \mathrm{H}, \mathrm{m}), 8.14(3 \mathrm{H}, \mathrm{m}), 8.59(1 \mathrm{H}, \mathrm{d}, J=$ $1.8 \mathrm{~Hz}), 8.81(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 10.61(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}: \mathrm{C}, 76.21 ; \mathrm{H}, 5.69 ; \mathrm{N}, 9.88$. Found: C, $75.99 ; \mathrm{H}, 5.78 ; \mathrm{N}$, 9.93.

4'-Methoxy-N-[3-(1-pyrrolidinylmethyl)-7-quinolinyl][1,1'-biphenyl]-4-carboxamide (5c). Compound 5 c was prepared in the same manner as described for $\mathbf{5 b}$. Yield: 49%. Mp: 202-204 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.72(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{s}), 3.82$ $(3 \mathrm{H}, \mathrm{s}), 7.08(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.74(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.83(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 7.97(2 \mathrm{H}, \mathrm{m}), 8.10(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{d}, J=$ $1.2 \mathrm{~Hz}), 8.59(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 8.81(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 10.57(1 \mathrm{H}$, s). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 75.93 ; \mathrm{H}, 6.28 ; \mathrm{N}, 9.49$. Found: C, 75.99 ; H, 6.23; N, 9.63 .
4'-Methyl- N-[3-(1-pyrrolidinylmethyl)-7-quinolinyl][1,1'-bi-phenyl]-4-carboxamide (5d). Compound 5 d was prepared in the same manner as described for $\mathbf{5 b}$. Yield: 30%. Mp: $206-208{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.72(4 \mathrm{H}, \mathrm{m}), 2.37(3 \mathrm{H}, \mathrm{s}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.77$ $(2 \mathrm{H}, \mathrm{s}), 7.33(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.85(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 7.97(2 \mathrm{H}, \mathrm{m}), 8.11(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 8.16(1 \mathrm{H}, \mathrm{d}, J=$ $1.5 \mathrm{~Hz}), 8.59(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 8.81(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 10.59(1 \mathrm{H}$, s). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 78.77$; $\mathrm{H}, 6.52 ; \mathrm{N}, 9.84$. Found: C, 78.77; H, 6.35; N, 9.63.

4'-Chloro-N-[3-(1-pyrrolidinylmethyl)-7-quinolinyl][1,1'-bi-phenyl]-4-carboxamide (5e). Compound 5 e was prepared in the same manner as described for $\mathbf{5 b}$. Yield: 50% Mp: $217-220{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.72(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.77(2 \mathrm{H}, \mathrm{s}), 7.58$ $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.82(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.88(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$,
$7.97(2 \mathrm{H}, \mathrm{m}), 8.13(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 8.16(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 8.59$ $(1 \mathrm{H}, \mathrm{s}), 8.81(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 10.62(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 73.38 ; \mathrm{H}, 5.47 ; \mathrm{N}, 9.51$. Found: C, 73.35; H, 5.45; N, 9.53 .

6-(4-Fluorophenyl)-N-[3-(1-pyrrolidinylmethyl)-7quinolinyl]nicotinamide (5 f). Compound $\mathbf{5 f}$ was prepared in the same manner as described for $\mathbf{5 b}$. Yield: 64%. Mp: $218-220{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.72(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{s}), 7.38$ $(2 \mathrm{H}, \mathrm{m}), 7.96(2 \mathrm{H}, \mathrm{m}), 8.18(2 \mathrm{H}, \mathrm{m}), 8.28(2 \mathrm{H}, \mathrm{m}), 8.45(1 \mathrm{H}, \mathrm{dd}, J=$ $8.4,2.4 \mathrm{~Hz}), 8.59(1 \mathrm{H}, \mathrm{s}), 8.82(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 9.25(1 \mathrm{H}, \mathrm{d}, J=1.5$ $\mathrm{Hz}), 10.76(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 71.71 ; \mathrm{H}$, 5.55 ; N, 12.87. Found: C, 71.55 ; H, 5.59; N, 12.84.

6-Phenyl- N-[3-(1-pyrrolidinylmethyl)-7-quinolinyl]nicotinamide (5 g). Compound 5 g was prepared in the same manner as described for $\mathbf{5 b}$. Yield: 32%. Mp: 208-210 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 1.72(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{s}), 7.55(3 \mathrm{H}, \mathrm{m}), 7.96$ $(2 \mathrm{H}, \mathrm{m}), 8.20(4 \mathrm{H}, \mathrm{m}), 8.45(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}), 8.59(1 \mathrm{H}, \mathrm{s})$, $8.82(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 9.26(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 10.76(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.80 ; \mathrm{H}, 6.04 ; \mathrm{N}, 13.42$. Found: C, 74.95; H, 5.98; N, 13.35.

6-(4-Methoxyphenyl)-N-[3-(1-pyrrolidinylmethyl)-7quinolinyl]nicotinamide (5 h). Compound 5 h was prepared in the same manner as described for $\mathbf{5 b}$. Yield: 32%. Mp: $246-248{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.72(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.77(2 \mathrm{H}, \mathrm{s}), 3.85$ $(3 \mathrm{H}, \mathrm{s}), 7.10(2 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 7.96(2 \mathrm{H}, \mathrm{m}), 8.11(1 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}), 8.19(3 \mathrm{H}, \mathrm{m}), 8.40(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}), 8.58(1 \mathrm{H}, \mathrm{s}), 8.82$ $(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 9.21(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 10.72(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 73.95; H, 5.98; N, 12.78. Found: C, 73.66; H, 6.04; N, 12.74 .

6-(4-Methylphenyl)-N-[3-(1-pyrrolidinylmethyl)-7quinolinyl]nicotinamide (5i). Compound 5 i was prepared in the same manner as described for $\mathbf{5 b}$. Yield: 64%. Mp: $226-228{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.72(4 \mathrm{H}, \mathrm{m}), 2.39(3 \mathrm{H}, \mathrm{s}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.77$ $(2 \mathrm{H}, \mathrm{s}), 7.36(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.96(2 \mathrm{H}, \mathrm{m}), 8.11(2 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}), 8.17(2 \mathrm{H}, \mathrm{m}), 8.42(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}), 8.59(1 \mathrm{H}, \mathrm{s}), 8.82$ $(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 9.23(1 \mathrm{H}, \mathrm{m}), 10.74(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 76.75 ; \mathrm{H}, 6.20 ; \mathrm{N}, 13.26$. Found: C, 76.47 ; H, 6.29; N, 13.13.

6-(4-Chlorophenyl)-N-[3-(1-pyrrolidinylmethyl)-7quinolinyl]nicotinamide (5 j). Compound 5 j was prepared in the same manner as described for $\mathbf{5 b}$. Yield: 54%. Mp: $223-225{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.72(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.77(2 \mathrm{H}, \mathrm{s}), 7.62$ $(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.96(2 \mathrm{H}, \mathrm{m}), 8.17-8.26(4 \mathrm{H}, \mathrm{m}), 8.47(1 \mathrm{H}, \mathrm{dd}, J$ $=8.4,2.4 \mathrm{~Hz}), 8.59(1 \mathrm{H}, \mathrm{s}), 8.82(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 9.26(1 \mathrm{H}, \mathrm{d}, J=$ $1.5 \mathrm{~Hz}), 10.77(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}: \mathrm{C}, 70.50 ; \mathrm{H}$, 5.23 ; N, 12.65; Cl, 8.00. Found: C, 70.28; H, 5.20 ; N, 12.91 .

4-Phenyl- N -[3-(1-pyrrolidinylmethyl)-7-quinolinyl]-1-piperidinecarboxamide (5 II). To a solution of 38 ($150 \mathrm{mg}, 0.569 \mathrm{mmol}$) and triethylamine ($79.1 \mu \mathrm{~L}, 0.569 \mathrm{mmol}$) in DMA (3 mL) was added 1,1 'carbonyldiimidazole ($111 \mathrm{mg}, 0.682 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After this solution was stirred for 1 h , 4-phenylpiperidine hydrochloride (124 $\mathrm{mg}, 0.626 \mathrm{mmol}$) was added, and the reaction mixture was stirred at room temperature for 2 h . The mixture was diluted with EtOAc, and the solution was washed with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and brine. The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuo, and the residue was chromatographed on alumina, eluting with EtOAc, and crystallized from EtOAc and diisopropyl ether to give $51(18.8 \mathrm{mg}, 8 \%)$ as a powder. Mp: 222-224 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 1.59-1.67(2 \mathrm{H}, \mathrm{m}), 1.71(4 \mathrm{H}, \mathrm{m}), 1.81-$ $1.85(2 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 2.77(1 \mathrm{H}, \mathrm{m}), 2.94(2 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{s})$, $4.32-4.36(2 \mathrm{H}, \mathrm{m}), 7.18-7.34(5 \mathrm{H}, \mathrm{m}), 7.73-7.82(2 \mathrm{H}, \mathrm{m}), 8.07$ $(1 \mathrm{H}, \mathrm{s}), 8.16(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 8.73(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 8.87(1 \mathrm{H}$, s). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 75.33 ; \mathrm{H}, 7.29$; $\mathrm{N}, 13.52$. Found: C, 75.15; H, 7.35; N, 13.47.

4-(4-Fluorophenyl)-N-[3-(1-pyrrolidinylmethyl)-7-quinolin-$\mathrm{yl}]-1$-piperidinecarboxamide (5 k). Compound 5 k was prepared in the same manner as described for 51 . Yield: 38%. Mp: $239-241^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.56-1.64(2 \mathrm{H}, \mathrm{m}), 1.71(4 \mathrm{H}, \mathrm{m}), 1.80-1.84$ $(2 \mathrm{H}, \mathrm{m}), 2.47(4 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{m}), 2.92(2 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{s})$, $4.31-4.36(2 \mathrm{H}, \mathrm{m}), 7.12(2 \mathrm{H}, \mathrm{m}), 7.32(2 \mathrm{H}, \mathrm{m}), 7.73-7.82(2 \mathrm{H}, \mathrm{m})$, $8.06(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 8.16(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 8.72(1 \mathrm{H}, \mathrm{d}, J=1.8$
$\mathrm{Hz}), 8.87(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{FN}_{4} \mathrm{O}: \mathrm{C}, 72.20 ; \mathrm{H}, 6.76 ; \mathrm{N}$, 12.95. Found: C, 71.94; H, 6.77; N, 12.90.

4-(4-Methoxyphenyl)-N-[3-(1-pyrrolidinylmethyl)-7-quino-linyl]-1-piperidinecarboxamide (5 m). Compound 5 m was prepared in the same manner as described for 5l. Yield: 29%. Mp: 241$243{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.55-1.62(2 \mathrm{H}, \mathrm{m}), 1.71(4 \mathrm{H}, \mathrm{m})$, $1.78-1.82(2 \mathrm{H}, \mathrm{m}), 2.49(4 \mathrm{H}, \mathrm{m}), 2.71(1 \mathrm{H}, \mathrm{m}), 2.91(2 \mathrm{H}, \mathrm{m}), 3.72$ $(5 \mathrm{H}, \mathrm{m}), 4.31-4.35(2 \mathrm{H}, \mathrm{m}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.19(2 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}), 7.77(2 \mathrm{H}, \mathrm{m}), 8.07(1 \mathrm{H}, \mathrm{s}), 8.16(1 \mathrm{H}, \mathrm{s}), 8.72(1 \mathrm{H}, \mathrm{d}, J=2.1$ $\mathrm{Hz}), 8.88(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 72.94 ; \mathrm{H}, 7.26 ; \mathrm{N}$, 12.60. Found: C, 72.75; H, 7.30; N, 12.56.

4-(4-Methylphenyl)-N-[3-(1-pyrrolidinylmethyl)-7-quinolin-yl]-1-piperidinecarboxamide (5n). Compound $5 n$ was prepared in the same manner as described for 51 . Yield: 34%. Mp: $244-246^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.55-1.65(2 \mathrm{H}, \mathrm{m}), 1.71(4 \mathrm{H}, \mathrm{m}), 1.78-1.82$ $(2 \mathrm{H}, \mathrm{m}), 2.26(3 \mathrm{H}, \mathrm{s}), 2.47(4 \mathrm{H}, \mathrm{m}), 2.72(1 \mathrm{H}, \mathrm{m}), 2.92(2 \mathrm{H}, \mathrm{m}), 3.72$ $(2 \mathrm{H}, \mathrm{s}), 4.31-4.35(2 \mathrm{H}, \mathrm{m}), 7.09-7.17(4 \mathrm{H}, \mathrm{m}), 7.73-7.82(2 \mathrm{H}, \mathrm{m})$, $8.07(1 \mathrm{H}, \mathrm{s}), 8.15(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 8.72(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 8.88$ $(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 75.67$; H, 7.53; N, 13.07. Found: C, 75.45; H, 7.56; N, 13.03.

4-(4-Chlorophenyl)-N-[3-(1-pyrrolidinylmethyl)-7-quinolin-yl]-1-piperidinecarboxamide (50). Compound 50 was prepared in the same manner as described for 51 . Yield: 37%. Mp: $249-251^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.56-1.64(2 \mathrm{H}, \mathrm{m}), 1.71(4 \mathrm{H}, \mathrm{m}), 1.80-1.84$ $(2 \mathrm{H}, \mathrm{m}), 2.47(4 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}, \mathrm{m}), 2.92(2 \mathrm{H}, \mathrm{m}), 3.72(2 \mathrm{H}, \mathrm{s})$, $4.31-4.36(2 \mathrm{H}, \mathrm{m}), 7.30-7.38(4 \mathrm{H}, \mathrm{m}), 7.72-7.82(2 \mathrm{H}, \mathrm{m}), 8.06$ $(1 \mathrm{H}, \mathrm{s}), 8.16(1 \mathrm{H}, \mathrm{s}), 8.72(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 8.87(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{ClN}_{4} \mathrm{O} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.73 ; \mathrm{H}, 6.57$; N, 12.33. Found: C, 68.67 ; H, 6.52; N, 12.33.

4'-Fluoro- N -[8-fluoro-3-(1-pyrrolidinylmethyl)-7-quinolinyl][1, 1^{\prime}-biphenyl]-4-carboxamide (5p). To a solution of $42(200 \mathrm{mg}$, 0.467 mmol), 4-fluorophenyboronic acid ($98.0 \mathrm{mg}, 0.700 \mathrm{mmol}$), and $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(0.70 \mathrm{~mL}, 1.40 \mathrm{mmol})$ in 1, 2-dimethoxyethane (4.67 mL) was added tetrakis(triphenylphosphine)palladium (27.0 mg , 0.0234 mmol), and the reaction mixture was heated to $85^{\circ} \mathrm{C}$ for 5 h under nitrogen. The reaction mixture was poured into 1 M NaOH , and the solution was subjected to extraction with THF. The extract was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on NH-silica gel, eluting with EtOAc, to give white solids. Recrystallization from EtOAc and diisopropyl ether gave $\mathbf{5 p}$ ($72.3 \mathrm{mg}, 35 \%$) as crystals. Mp: 190-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.74(4 \mathrm{H}, \mathrm{m}), 2.51(4 \mathrm{H}, \mathrm{m}), 3.83(2 \mathrm{H}$, s), $7.35(2 \mathrm{H}, \mathrm{m}), 7.80-7.90(6 \mathrm{H}, \mathrm{m}), 8.14(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.31$ $(1 \mathrm{H}, \mathrm{s}), 8.90(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 10.49(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O} .0 .3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 72.24 ; \mathrm{H}, 5.30$; N, 9.36. Found: C, 72.04; H, 5.13; N, 9.17.

4'-Fluoro-N-[6-fluoro-3-(1-pyrrolidinylmethyl)-7-quinolinyl][1, 1^{\prime}-biphenyl]-4-carboxamide (5t). Compound $5 t$ was prepared in the same manner as described for $\mathbf{5 p}$. Yield: $53 \% . \mathrm{Mp}$: $198-200^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.73(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.80(2 \mathrm{H}, \mathrm{s})$, $7.36(2 \mathrm{H}, \mathrm{m}), 7.82-7.93(5 \mathrm{H}, \mathrm{m}), 8.12(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.23(1 \mathrm{H}$, s), $8.37(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.83(1 \mathrm{H}, \mathrm{s}), 10.45(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 73.12$; $\mathrm{H}, 5.23$; $\mathrm{N}, ~ 9.47$. Found: C, 72.92; H, 5.18; N, 9.36 .

4'-Fluoro- N -[6-chloro-3-(1-pyrrolidinylmethyl)-7-quinolin-yl]-[1,1'-biphenyl]-4-carboxamide (5u). Compound 5u was prepared in the same manner as described for 5 p. Yield: 53%. Mp: $188{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 1.73(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.80$ $(2 \mathrm{H}, \mathrm{s}), 7.36(2 \mathrm{H}, \mathrm{m}), 7.82(2 \mathrm{H}, \mathrm{m}), 7.87(2 \mathrm{H}, \mathrm{m}), 8.14(2 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}), 8.26(1 \mathrm{H}, \mathrm{s}), 8.29(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{s}), 10.32$ $(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{ClFN}_{3} \mathrm{O}: \mathrm{C}, 70.51 ; \mathrm{H}, 5.04 ; \mathrm{N}, 9.14$; Cl, 7.71; F, 4.13. Found: C, 70.37; H, 5.01; N, 8.73.

4-Bromo-N-[3-(hydroxymethyl)-8-methyl-7-quinolinyl]benzamide (49). Compound 49 was prepared in the same manner as described for 26. Yield: $80 \% .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.65(3 \mathrm{H}, \mathrm{s})$, $4.74(2 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 5.48(1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}), 7.78(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.99(2 \mathrm{H}, \mathrm{d}, J$ $=8.1 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 10.31$ (1H, s).

4-Bromo-N-[3-(hydroxymethyl)-8-methoxy-7-quinolinyl]benzamide (50). Compound $\mathbf{5 0}$ was prepared in the same manner as
described for 26. Yield: $55 \% .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 4.11(3 \mathrm{H}, \mathrm{s})$, $4.73(2 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}), 5.48(1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}), 7.71-7.78(3 \mathrm{H}, \mathrm{m})$, $7.96-8.03(3 \mathrm{H}, \mathrm{m}), 8.22(1 \mathrm{H}, \mathrm{s}), 8.87(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 10.02(1 \mathrm{H}$, s).

4-Bromo-N-[8-ethyl-3-(hydroxymethyl)-7-quinolinyl]benzamide (51). Compound 51 was prepared in the same manner as described for 26. Yield: 28%. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{3}): $\delta 1.15(3 \mathrm{H}, \mathrm{t}, J=$ $7.4 \mathrm{~Hz}), 3.28(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 4.74(2 \mathrm{H}, \mathrm{s}), 5.46(1 \mathrm{H}, \mathrm{t}, J=3.6$ $\mathrm{Hz}), 7.54(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.72-7.80(3 \mathrm{H}, \mathrm{m}), 7.84-8.00(2 \mathrm{H}, \mathrm{m})$, $8.22(1 \mathrm{H}, \mathrm{s}), 8.89(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 10.25(1 \mathrm{H}, \mathrm{s})$.

4-Bromo-N-[3-(hydroxymethyl)-6-methyl-7-quinolinyl]benzamide (52). Compound 52 was prepared in the same manner as described for 26. Yield: $85 \%{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.44(3 \mathrm{H}, \mathrm{s})$, $4.71(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{m}), 7.78(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.84$ $(1 \mathrm{H}, \mathrm{s}), 7.98(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{s}), 8.15(1 \mathrm{H}, \mathrm{m}), 8.80$ $(1 \mathrm{H}, \mathrm{m}), 10.18(1 \mathrm{H}, \mathrm{s})$.

4-Bromo-N-[3-(chloromethyl)-8-methyl-7-quinolinyl]benzamide hHydrochloride (53). Compound 53 was prepared in the same manner as described for 30 . Yield: 67%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 2.74(3 \mathrm{H}, \mathrm{s}), 5.09(2 \mathrm{H}, \mathrm{s}), 7.76(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.97(2 \mathrm{H}, \mathrm{d}, J=$ $6.6 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 8.24(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 9.25(1 \mathrm{H}$, d, $J=2.1 \mathrm{~Hz}), 9.26(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz})$.

4-Bromo-N-[3-(chloromethyl)-8-methoxy-7-quinolinyl]benzamide Hydrichloride (54). Compound 54 was prepared in the same manner as described for 30. Yield: quantitative. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 4.09(3 \mathrm{H}, \mathrm{s}), 5.07(2 \mathrm{H}, \mathrm{s}), 7.76(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.96$ $(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.11(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 8.52(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz})$, 9.24 ($2 \mathrm{H}, \mathrm{s}$).

4-Bromo-N-[3-(chloromethyl)-8-ethyl-7-quinolinyl]benzamide Hydrochloride (55). Compound 55 was prepared in the same manner as described for 30 . Yield: 78%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 1.30(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.33(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}), 5.10(2 \mathrm{H}, \mathrm{s}), 7.75$ $(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.96(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$, $8.26(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 9.28-9.30(2 \mathrm{H}, \mathrm{m})$.

4-Bromo-N-[3-(chloromethyl)-6-methyl-7-quinolinyl]benzamide Hydrochloride (56). Compound 56 was prepared in the same manner as described for 30 . Yield: quantitative. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6}\right): \delta 2.55(3 \mathrm{H}, \mathrm{s}), 5.08(2 \mathrm{H}, \mathrm{s}), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $8.00(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{s}), 8.50(1 \mathrm{H}, \mathrm{s}), 8.80(1 \mathrm{H}, \mathrm{s}), 9.16$ $(1 \mathrm{H}, \mathrm{s}), 10.34(1 \mathrm{H}, \mathrm{s})$.

4-Bromo-N-[8-methyl-3-(1-pyrrolidinylmethyl)-7quinolinyl]benzamide (57). Compound 57 was prepared in the same manner as described for 34 . Yield: 72%. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ $1.72(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 2.64(3 \mathrm{H}, \mathrm{s}), 3.80(2 \mathrm{H}, \mathrm{s}), 7.59(1 \mathrm{H}, \mathrm{d}, J$ $=8.7 \mathrm{~Hz}), 7.78(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.98(2 \mathrm{H}$, d, $J=9.0 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 8.88(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 10.32$ ($1 \mathrm{H}, \mathrm{s}$).

4-Bromo-N-[8-methoxy-3-(1-pyrrolidinylmethyl)-7quinolinyl]benzamide (58). Compound 58 was prepared in the same manner as described for 34 . Yield: 88%. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ $1.72(4 \mathrm{H}, \mathrm{m}), 2.50-2.54(4 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{s}), 4.11(3 \mathrm{H}, \mathrm{s}), 7.69-$ $7.79(3 \mathrm{H}, \mathrm{m}), 7.96-8.00(3 \mathrm{H}, \mathrm{m}), 8.21(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 8.85(1 \mathrm{H}$, d, $J=1.8 \mathrm{~Hz}), 10.03(1 \mathrm{H}, \mathrm{s})$.

4-Bromo-N-[8-ethyl-3-(1-pyrrolidinylmethyl)-7-quinolinyl]benzamide (59). Compound 59 was prepared in the same manner as described for 34. Yield: $91 \% .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.15(3 \mathrm{H}, \mathrm{t}, J=$ $7.2 \mathrm{~Hz}), 1.73-1.79(4 \mathrm{H}, \mathrm{m}), 2.50-2.51(4 \mathrm{H}, \mathrm{m}), 3.27(2 \mathrm{H}, \mathrm{q}, J=7.4$ $\mathrm{Hz}), 3.80(2 \mathrm{H}, \mathrm{s}), 7.54(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.76-7.85(3 \mathrm{H}, \mathrm{m}), 7.99$ $(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 8.88(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz})$, $10.28(1 \mathrm{H}, \mathrm{s})$.

4-Bromo-N-[6-methyl-3-(1-pyrrolidinylmethyl)-7quinolinyl]benzamide (60). Compound 60 was prepared in the same manner as described for 34 . Yield: 56%. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ $1.71(4 \mathrm{H}, \mathrm{m}), 2.44(3 \mathrm{H}, \mathrm{s}), 2.48(4 \mathrm{H}, \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{s}), 7.77(2 \mathrm{H}, \mathrm{d}, J$ $=8.8 \mathrm{~Hz}), 7.83(1 \mathrm{H}, \mathrm{s}), 7.97(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.06(1 \mathrm{H}, \mathrm{s}), 8.12$ $(1 \mathrm{H}, \mathrm{m}), 8.78(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 10.16(1 \mathrm{H}, \mathrm{s})$.

8-Methyl-3-(1-pyrrolidinylmethyl)-7-quinolinamine (61). Compound 61 was prepared in the same manner as described for 38. Yield: quantitative. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.79(4 \mathrm{H}, \mathrm{m}), 2.54(4 \mathrm{H}$, $\mathrm{m}), 2.59(3 \mathrm{H}, \mathrm{s}), 3.74(2 \mathrm{H}, \mathrm{s}), 3.98(2 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz})$,
$7.47(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.91(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 8.76(1 \mathrm{H}, \mathrm{d}, J=2.2$ Hz).

6-Methyl-3-(1-pyrrolidinylmethyl)-7-quinolinamine Hydrochloride (62). Compound 62 was prepared in the same manner as described for 38. Yield: 94%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 2.05-2.22(4 \mathrm{H}$, $\mathrm{m}), 3.34-3.52(4 \mathrm{H}, \mathrm{m}), 4.57(2 \mathrm{H}, \mathrm{s}), 7.13(1 \mathrm{H}, \mathrm{s}), 7.75(1 \mathrm{H}, \mathrm{s}), 8.48$ $(1 \mathrm{H}, \mathrm{s}), 8.73(1 \mathrm{H}, \mathrm{m})$.

4'-Fluoro-N-[8-methyl-3-(1-pyrrolidinylmethyl)-7-quinolinyl][1,1'-biphenyl]-4-carboxamide (5v). Compound 5v was prepared in the same manner as described for 5 a . Yield: $37 \% \mathrm{Mp}$: $220-222{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6}\right): \delta 1.73(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m})$, $2.67(3 \mathrm{H}, \mathrm{s}), 3.80(2 \mathrm{H}, \mathrm{s}), 7.35(2 \mathrm{H}, \mathrm{m}), 7.62(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz})$, $7.81-7.87(5 \mathrm{H}, \mathrm{m}), 8.14(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$, $8.88(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 10.28(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}$: C, 76.51; H, 5.96; N, 9.56. Found: C, 76.24; H, 6.04; N, 9.57.

4'-Methoxy-N-[8-methyl-3-(1-pyrrolidinylmethyl)-7-quinolinyl][1,1'-biphenyl]-4-carboxamide (5x). Compound 5x was prepared in the same manner as described for 5 a . Yield: 44%. Mp: $210-213{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): \delta 1.73(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m})$, $2.67(3 \mathrm{H}, \mathrm{s}), 3.80(2 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 7.08(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.62$ $(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.74(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.83(3 \mathrm{H}, \mathrm{m}), 8.12(2 \mathrm{H}$, d, $J=8.4 \mathrm{~Hz}), 8.21(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 8.88(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 10.23$ (1H, s). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 0.7 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 75.04$; H, 6.60; N, 9.05. Found: C, 74.86; H, 6.40; N, 8.73.

4'-Chloro-N-[8-methyl-3-(1-pyrrolidinylmethyl)-7-quinolinyl][1,1'-biphenyl]-4-carboxamide (5z). Compound 5z was prepared in the same manner as described for 5 a. Yield: 18%. Mp: $227-279{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 1.73(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m})$, $2.67(3 \mathrm{H}, \mathrm{s}), 3.81(2 \mathrm{H}, \mathrm{s}), 7.57(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, J=$ $9.0 \mathrm{~Hz}), 7.81-7.89(5 \mathrm{H}, \mathrm{m}), 8.15(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.23(1 \mathrm{H}, \mathrm{s})$, $8.88(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 10.29(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 72.89 ; \mathrm{H}, 5.81$; N, 9.11. Found: C, 72.95; H, 5.78; N, 9.17.
N-[8-Methyl-3-(1-pyrrolidinylmethyl)-7-quinolinyl][1, 1'-bi-phenyl]-4-carboxamide (5 w). Compound 5 w was prepared in the same manner as described for 5l. Yield: 69%. Mp: $184-186{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.73(4 \mathrm{H}, \mathrm{m}), 2.50(4 \mathrm{H}, \mathrm{m}), 2.67(3 \mathrm{H}, \mathrm{s}), 3.81$ $(2 \mathrm{H}, \mathrm{s}), 7.46(1 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{m}), 7.63(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.77-$ $7.88(5 \mathrm{H}, \mathrm{m}), 8.15(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 8.88$ $(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 10.28(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}:$ C, 78.77; H, 6.52; N, 9.84. Found: C, 78.67; H, 6.33; N, 9.57.

4'-Methyl-N-[8-methyl-3-(1-pyrrolidinylmethyl)-7-quinolinyl][1,1'-biphenyl]-4-carboxamide (5y). Compound 5y was prepared in the same manner as described for 51 . Yield: 68%. Mp: $177-179{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 1.72(4 \mathrm{H}, \mathrm{m}), 2.37(3 \mathrm{H}, \mathrm{s})$, $2.50(4 \mathrm{H}, \mathrm{m}), 2.67(3 \mathrm{H}, \mathrm{s}), 3.80(2 \mathrm{H}, \mathrm{s}), 7.34(2 \mathrm{H}, \mathrm{m}), 7.61-7.72$ $(3 \mathrm{H}, \mathrm{m}), 7.81-7.85(2 \mathrm{H}, \mathrm{m}), 7.93(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.13(2 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz}), 8.20(1 \mathrm{H}, \mathrm{m}), 8.88(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 10.27(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 78.03 ; \mathrm{H}, 6.82$; N, 9.41. Found: C, 77.97; H, 6.53; N, 9.26.

4'-Fluoro-N-[8-methoxy-3-(1-pyrrolidinylmethyl)-7-quinolinyl][1,1'-biphenyl]-4-carboxamide (5q). Compound $5 q$ was prepared in the same manner as described for 5 p. Yield: 70%. Mp: $142-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.74(4 \mathrm{H}, \mathrm{m}), 2.48-2.54(4 \mathrm{H}$, $\mathrm{m}), 3.81(2 \mathrm{H}, \mathrm{s}), 4.13(3 \mathrm{H}, \mathrm{s}), 7.30-7.39(2 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}), 7.79-7.87(4 \mathrm{H}, \mathrm{m}), 8.04-8.15(3 \mathrm{H}, \mathrm{m}), 8.23(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz})$, $8.86(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 9.97(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 73.10 ; \mathrm{H}, 5.81 ; \mathrm{N}, 9.13$. Found: C, 73.32; H, 5.67; N, 9.34.
N-[8-Ethyl-3-(1-pyrrolidinylmethyl)-7-quinolinyl]-4'-fluoro-[1,1'-biphenyl]-4-carboxamide (5r). Compound 5 r was prepared in the same manner as described for 5 p. Yield: $70 \% . \mathrm{Mp}: 266-267^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.17(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.73(4 \mathrm{H}, \mathrm{m}), 2.50$ $(4 \mathrm{H}, \mathrm{m}), 2.91-3.35(2 \mathrm{H}, \mathrm{m}), 3.80(2 \mathrm{H}, \mathrm{s}), 7.31-7.40(2 \mathrm{H}, \mathrm{m}), 7.57$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.80-7.88(5 \mathrm{H}, \mathrm{m}), 8.14(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.22$ $(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 8.90(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 10.25(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{O} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 75.89 ; \mathrm{H}, 6.28 ; \mathrm{N}, 9.16$. Found: C, 75.86; H, 6.14; N, 9.05.

4'-Fluoro-N-[6-methyl-3-(1-pyrrolidinylmethyl)-7-quinolinyl][1,1'-biphenyl]-4-carboxamide (5u). The title com-
pound was prepared according to the same procedure described for $5 \mathbf{5}$ as a powder. Yield: $35 \% . \mathrm{Mp}: 182-187{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.82$ $(4 \mathrm{H}, \mathrm{m}), 2.53(3 \mathrm{H}, \mathrm{s}), 2.56(4 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{s}), 7.12-7.22(2 \mathrm{H}, \mathrm{m})$, $7.54-7.72(5 \mathrm{H}, \mathrm{m}), 7.94-8.04(4 \mathrm{H}, \mathrm{m}), 8.75(1 \mathrm{H}, \mathrm{s}), 8.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 1.6 Hz). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.98 ; \mathrm{H}, 6.07$; N, 9.37. Found: C, 74.80 ; H, 5.93; N, 9.29.
\mathbf{N}-(2-Fluoro-3-nitrophenyl)acetamide (64). To a solution of 2-fluoro-3-nitroaniline (63) $(18.2 \mathrm{~g}, 116 \mathrm{mmol})$ in pyridine $(233 \mathrm{~mL})$ was added acetic anhydride ($27.4 \mathrm{~mL}, 291 \mathrm{mmol}$), and the reaction mixture was stirred for 16 h at room temperature. The solvent was evaporated in vacuo, and the residue was solidified with diisopropyl ether to give $64(19.2 \mathrm{~g}, 83 \%)$ as a powder. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.30$ $(3 \mathrm{H}, \mathrm{s}), 7.24-7.34(1 \mathrm{H}, \mathrm{m}), 7.56-7.70(1 \mathrm{H}, \mathrm{m}), 7.72-7.81(1 \mathrm{H}, \mathrm{m})$, 8.64-8.72 (1H, m).

N -(3-Amino-2-fluorophenyl)acetamide (23). A mixture of 64 ($18.2 \mathrm{~g}, 91.7 \mathrm{mmol}$), $10 \% \mathrm{Pd} / \mathrm{C}(1.82 \mathrm{~g})$, and cyclohexene $(27.9 \mathrm{~mL}$, $275 \mathrm{mmol})$ in ethanol $(183 \mathrm{~mL})$ was heated at $60^{\circ} \mathrm{C}$ for 21 h under N_{2} and cooled to room temperature. The mixture was filtered through Celite, and the filtrate was concentrated in vacuo. The residue was solidified with diisopropyl ether to give $23(14.2 \mathrm{~g}, 92 \%)$ as a powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.20(3 \mathrm{H}, \mathrm{s}), 3.62-3.82(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.48-6.58$ $(1 \mathrm{H}, \mathrm{m}), 6.85-6.94(1 \mathrm{H}, \mathrm{m}), 7.28-7.46(1 \mathrm{H}, \mathrm{br}$ s), 7.56-7.76$(1 \mathrm{H}$, m).

2-Methoxy-3-nitrobenzoic Acid (66). A mixture of methyl 2-methoxy-3-nitrobenzoate (65) ($4.96 \mathrm{~g}, 23.5 \mathrm{mmol}$) and 1 M NaOH $(50 \mathrm{~mL}, 50 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$ was stirred for 2 h at $50^{\circ} \mathrm{C}$. The reaction mixture was concentrated in vacuo and poured into 1 M HCl , and extraction with EtOAc was performed. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was solidified with hexane and EtOAc to give 66 ($4.37 \mathrm{~g}, 94 \%$) as a light yellow powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.02(3 \mathrm{H}, \mathrm{s}), 7.25-7.34(1 \mathrm{H}$, $\mathrm{m}), 7.91(1 \mathrm{H}, \mathrm{dd}, J=1.8,8.0 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{dd}, J=1.8,8.4 \mathrm{~Hz})$.

4-Bromo- N -(2-methoxy-3-nitrophenyl)benzamide (67). To a solution of $66(9.25 \mathrm{~g}, 46.9 \mathrm{mmol})$ in $t-\mathrm{BuOH}(350 \mathrm{~mL})$ were added triethylamine $(9.9 \mathrm{~mL}, 70.4 \mathrm{mmol})$ and diphenylphosphoryl azide $(11.2 \mathrm{~mL}, 51.6 \mathrm{mmol})$, and the reaction mixture was heated at reflux for 5 h . After removal of the solvent in vacuo, the residue was chromatographed on silica gel (hexane-EtOAc, 5:1) to give a Bocprotected aniline derivative. To this compound in EtOAc (50 mL) was added $4 \mathrm{M} \mathrm{HCl}-E t O A c(100 \mathrm{~mL})$, the mixture was heated at $50^{\circ} \mathrm{C}$ for 2 h , and the solvent was removed in vacuo. The residue was collected and washed with diisopropyl ether. To a suspension of aniline derivative in tetrahydrofuran (150 mL) were added 4bromobenzoyl chloride ($10.0 \mathrm{~g}, 45.8 \mathrm{mmol}$) and triethylamine (17.5 $\mathrm{mL}, 125 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 4 h . The reaction mixture was poured into 1 M NaOH , and extraction with EtOAc was performed. The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was solidified with EtOAc and hexane to give 67 $(14.2 \mathrm{~g}, 86 \%)$ as a yellow powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.99(3 \mathrm{H}, \mathrm{s})$, $7.24-7.33(1 \mathrm{H}, \mathrm{m}), 7.64-7.79(5 \mathrm{H}, \mathrm{m}), 8.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}) 8.78(1 \mathrm{H}, \mathrm{dd}$, $J=1.8,8.4 \mathrm{~Hz})$.

N -(3-Amino-2-methoxyphenyl)-4-bromobenzamide (46). A mixture of $67(14.2 \mathrm{~g}, 40.5 \mathrm{mmol})$, reduced iron $(11.3 \mathrm{~g}, 20.3 \mathrm{mmol})$, and $\mathrm{CaCl}_{2}(2.25 \mathrm{~g}, 20.3 \mathrm{mmol})$ in 90% aqueous ethanol $(440 \mathrm{~mL})$ was heated at reflux for 4 h . The mixture was filtered through Celite, and the filtrate was concentrated in vacuo. The residue was dissolved with EtOAc , and the solution was washed with brine. The extract was dried over MgSO_{4}. After removal of the solvent in vacuo, the residue was solidified with hexane and EtOAc to give $46(11.2 \mathrm{~g}, 86 \%)$ as a colorless powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.76-3.82(5 \mathrm{H}, \mathrm{m}), 6.54(1 \mathrm{H}$, dd, $J=1.2,7.8 \mathrm{~Hz}), 6.94-6.99(1 \mathrm{H}, \mathrm{m}), 7.62-7.65(2 \mathrm{H}, \mathrm{m}), 7.73-$ $7.77(2 \mathrm{H}, \mathrm{m}), 7.82(1 \mathrm{H}, \mathrm{dd}, J=1.5,8.4 \mathrm{~Hz}), 8.37(1 \mathrm{H}, \mathrm{br} \mathrm{s})$.

Methyl 3-Nitro-2-vinylbenzoate (69). To a mixture of methyl 2-hydroxy-3-nitrobenzoate (68) $(10.0 \mathrm{~g}, 50.9 \mathrm{mmol})$ in tetrahydrofuran $(200 \mathrm{~mL})$ were added N, N-diisopropylethylamine ($13.3 \mathrm{~mL}, 76.4$ mmol) and N -(methylsulfonyl)- N -phenylmethanesulfonamide (21.8 g , 61.0 mmol) at $0{ }^{\circ} \mathrm{C}$. After being stirred at room temperature for 2 days, the mixture was concentrated in vacuo. The residue was dissolved with EtOAc, and the solution was washed with aqueous
$\mathrm{NaHCO}_{3}, 1 \mathrm{M} \mathrm{HCl}$, and brine. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was chromatographed on silica gel (hexane-EtOAc, 1:2) to give methyl 3-nitro-2$\{[($ trifluoromethyl $)$ sulfonyl $]$ oxy $\}$ benzoate $(16.7 \mathrm{~g}, 99.4 \%)$ as a light yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.00(3 \mathrm{H}, \mathrm{s}), 7.60-7.68(1 \mathrm{H}, \mathrm{m})$, 8.19-8.33 ($2 \mathrm{H}, \mathrm{m}$).

To a solution of the obtained oil $(10.0 \mathrm{~g}, 30.4 \mathrm{mmol})$ in DMF (150 mL) were added tributylvinyltin ($10.7 \mathrm{~mL}, 36.5 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium $(1.76 \mathrm{~g}, 1.52 \mathrm{mmol})$, and the reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 1 day under N_{2}. The mixture was diluted with EtOAc , and the solution was washed with aqueous NaHCO_{3} and brine. The extract was dried over MgSO_{4}. After removal of the solvent in vacuo, the residue was chromatographed on silica gel (hexane-EtOAc, 2:1) to give $69(4.91 \mathrm{~g}, 78 \%)$ as a light yellow powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.89(3 \mathrm{H}, \mathrm{s}), 5.24(1 \mathrm{H}, \mathrm{dd}, J=1.0,17.6$ $\mathrm{Hz}), 5.42(1 \mathrm{H}, \mathrm{dd}, J=1.2,11.8 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{dd}, J=11.4,17.6 \mathrm{~Hz})$, $7.44-7.52(1 \mathrm{H}, \mathrm{m}), 7.89(1 \mathrm{H}, \mathrm{dd}, J=1.4,8.4 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{dd}, J=$ $1.6,7.8 \mathrm{~Hz}$).

3-Nitro-2-vinylbenzoic Acid. The title compound was prepared according to the same procedure described for $13(4.23 \mathrm{~g}, 92 \%)$ as a light yellow powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.26(1 \mathrm{H}, \mathrm{d}, J=18.0 \mathrm{~Hz})$, $5.40(1 \mathrm{H}, \mathrm{dd}, J=0.6,13.2 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{dd}, J=11.4,17.6 \mathrm{~Hz}), 7.42-$ $7.49(1 \mathrm{H}, \mathrm{m}), 7.83(1 \mathrm{H}, \mathrm{dd}, J=1.2,8.2 \mathrm{~Hz}), 8.05(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.8$ $\mathrm{Hz}), 10-12(1 \mathrm{H}$, br s).
tert-Butyl 3-Nitro-2-vinylphenylcarbamate (70). To a solution of 3-nitro-2-vinylbenzoic acid ($7.86 \mathrm{~g}, 40.7 \mathrm{mmol}$) in t - BuOH (400 mL) were added triethylamine ($8.6 \mathrm{~mL}, 61.1 \mathrm{mmol}$) and diphenylphosphoryl azide ($9.65 \mathrm{~mL}, 44.8 \mathrm{mmol}$), and the reaction mixture was heated at reflux for 1 day. After removal of the solvent in vacuo, the residue was chromatographed on silica gel (hexane-EtOAc, $3: 1)$ to give $70(9.99 \mathrm{~g}, 93 \%)$ as a light yellow powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.52(9 \mathrm{H}, \mathrm{s}), 5.43(1 \mathrm{H}, \mathrm{dd}, J=1.0,18.0 \mathrm{~Hz}), 5.72-5.78$ $(1 \mathrm{H}, \mathrm{m}), 6.82(1 \mathrm{H}, \mathrm{dd}, J=11.4,18.4 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.33-7.38$ $(1 \mathrm{H}, \mathrm{m}), 7.42-7.59(1 \mathrm{H}, \mathrm{m}), 8.42(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$.

N -(3-Amino-2-methylphenyl)-4-bromobenzamide (47). A mixture of $70(5.0 \mathrm{~g}, 18.9 \mathrm{mmol})$ and $5 \% \mathrm{Pd} / \mathrm{C}(1.0 \mathrm{~g})$ in ethanol $(100 \mathrm{~mL})$ was stirred for 5 h under H_{2}. The mixture was filtered through Celite, and the filtrate was concentrated in vacuo. The residue was chromatographed on silica gel (hexane-EtOAc, 3:1) to give tertbutyl 3-amino-2-ethylphenylcarbamate ($3.88 \mathrm{~g}, 87 \%$) as a light yellow powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.15(3 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 1.51(9 \mathrm{H}, \mathrm{s})$, $2.52(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 3.62(2 \mathrm{H}, \mathrm{br} s), 6.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.48(1 \mathrm{H}, \mathrm{dd}$, $J=1.2,8.1 \mathrm{~Hz}), 6.96-7.02(1 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$.

To a suspension of the obtained aniline derivative $(3.78 \mathrm{~g}, 16.0$ mmol) in tetrahydrofuran (50 mL) were added 4-bromobenzoyl chloride $(3.87 \mathrm{~g}, 17.6 \mathrm{mmol})$ and triethylamine $(6.70 \mathrm{~mL}, 48.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 1 h. The reaction mixture was poured into 1 M NaOH , and extraction with EtOAc was performed. The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was crystallized from EtOAc and hexane to give tert-butyl 3-[(4-bromobenzoyl)amino]-2-methylphenylcarbamate ($6.58 \mathrm{~g}, 98 \%$) as a yellow powder. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.17(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.52$ $(9 \mathrm{H}, \mathrm{s}), 2.62(2 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}), 6.27(1 \mathrm{H}, \mathrm{s}), 7.19-7.27(1 \mathrm{H}, \mathrm{m})$, $7.48(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.59-7.68(6 \mathrm{H}, \mathrm{m})$.

To a mixture of the obtained 4-bromobenzoyl derivative (6.48 g , 15.5 mmol) in EtOAc (50 mL) and tetrahydrofuran (30 mL) was added $4 \mathrm{M} \mathrm{HCl}-E t O A c(60 \mathrm{~mL})$, and the mixture was heated at 60 ${ }^{\circ} \mathrm{C}$ for 3 h . The solution was washed with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and brine. The solvent was removed in vacuo to afford $47(4.53 \mathrm{~g}, 92 \%)$ as a colorless powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.20(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 2.57$ $(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}), 3.70(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.61(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.8 \mathrm{~Hz})$, $7.02-7.09(1 \mathrm{H}, \mathrm{m}), 7.16-7.20(1 \mathrm{H}, \mathrm{br}$ s), $7.60-7.64(3 \mathrm{H}, \mathrm{m}), 7.73$ $(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$.
N-(3-Amino-2-methylphenyl)-4-bromobenzamide (45). Compound 45 was prepared in the same manner as described for 46. Yield: quantitative. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.90(3 \mathrm{H}, \mathrm{s}), 4.91$ $(2 \mathrm{H}, \mathrm{s}), 6.48(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.55(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.88(1 \mathrm{H}$, m), $7.72(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.90(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 9.81(1 \mathrm{H}, \mathrm{s})$.
N-(5-Amino-2-methylphenyl)-4-bromobenzamide (48). Compound 48 was prepared in the same manner as described for 46. Yield: $92 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.22(3 \mathrm{H}, \mathrm{s}), 3.66(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $6.42-6.52(1 \mathrm{H}, \mathrm{m}), 6.99(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.44-7.50(1 \mathrm{H}, \mathrm{m})$, $7.54-7.68(3 \mathrm{H}, \mathrm{m}), 7.73(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$.

Measurement of Binding Affinities. The membrane fractions from CHO cells stably expressing human MCHR1, rat MCHR1, ${ }^{1,11}$ or human 5-HT2c were incubated at room temperature for 1 h with the radiolabeled ligand ($\left[{ }^{125} \mathrm{I}\right] \mathrm{MCH}-(4-19)$ for MCHR1 binding assays and $\left[{ }^{3} \mathrm{H}\right]$ mesulergine for 5-HT2c binding assay) in the presence of the compound at various concentrations. Binding reaction was terminated by rapid filtration through a GF/C glass filter, and the radioactivity retained in the filters was measured with a scintillation counter. The evaluation method for binding affinities to $5-\mathrm{HT} 2 \mathrm{c}$ receptor has been described in other reports.

Measurement of Arachidonic Acid Release. CHO cells expressing the human MCHR1 were plated in 24 -well plates at a density of 50000 cells/well and cultured for 1 day. The cells were incubated with $\left[{ }^{3} \mathrm{H}\right]$ arachidonic acid $(0.2 \mu \mathrm{Ci} /$ well $)$ for 16 h and washed twice with $500 \mu \mathrm{~L}$ of Dulbecco's modified Eagle's medium (DMEM) supplemented with 20 mM N -(2-hydroxyethyl)piperazine-N^{\prime}-ethanesulfonic acid (HEPES) (pH 7.4) and 0.2% bovine serum albumin. The cells were then preincubated with compounds at various concentrations at $37{ }^{\circ} \mathrm{C}$ for 30 min , and the reaction was started by addition of MCH. After incubation for 45 min , the radioactivity in the medium was measured with a liquid scintillation counter.

Animal Experiments. All animal experiments were performed in compliance with the Guidelines for the Care and Use of Laboratory Animals of Takeda Pharmaceutical Co.

Food Intake Inhibition in DIO Rats. Male 52 week old F344/Jcl rats loaded with a high-fat diet (Research Diets, D12451) from 5 weeks of age were used (DIO-F344 rats). Before the start of the experiment, the rats were independently raised, a powder high-fat diet (D12451M, Research Diets) was given, and tap water (0.5 mL) was administered for acclimation. The body weight and food intake from evening to morning of the next day were measured. The rats were grouped on the basis of the food intake and the body weight as indices. At 15:00, 0.5% methylcellulose solution was administered orally to the control group, and a 0.5% methylcellulose suspension of compound $\mathbf{5 v}$ (1,3 , and $10 \mathrm{mg} / \mathrm{kg}$) and sibutramine ($1 \mathrm{mg} / \mathrm{kg}$) were administered orally to the compound administration groups at $2 \mathrm{~mL} / \mathrm{kg}$ (six rats per group). Food intake was measured 6 and 17 h after administration. The food intake inhibition rate of each compound administration group to the control group was calculated. Each datum represents the mean \pm SD.

In Vivo Selectivity of Anorectic Action by Using MCHR1Deficient Mice. Male MCHR1-deficient mice and wild-type litter mate mice (34 weeks old) loaded with a high-fat diet (Research Diets, D12451) from 5 weeks of age were used. Before the start of the experiment, the mice were independently raised, a high-fat diet (D12451) was given, and tap water (0.5 mL) was administered for acclimation. The mice were grouped on the basis of food intake from day -5 to day -1 and body weight of day -1 as indices. On day 0 and day 1 at 16:00, 0.5% methylcellulose solution was administered orally to the control group, and a 0.5% methylcellulose suspension of the compound (3 and $10 \mathrm{mg} / \mathrm{kg}$) was administered orally to the compound 5 v administration groups at $10 \mathrm{~mL} / \mathrm{kg}$ (six mice per group). Food intake for 2 days was measured. Each datum represents the mean \pm SD.

AUTHOR INFORMATION

Corresponding Author

*Phone: +81-466-32-1130. Fax: +81-466-29-4451. E-mail: Kamata_Makoto@takeda.co.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Mr. K. Ohnishi and Mr. M. Yamaguchi for the pharmacokinetic study. We express our sincere gratitude to Dr. M. Fujino, Dr. O. Nishimura, Dr. A. Miyake, and Dr. H. Onda for their encouragement and helpful discussion for this work.

ABBREVIATIONS USED

MCH, melanin-concentrating hormone; 5-HT2c, serotonin receptor 2 c ; GPCR, G protein-coupled receptor; SAR, structure-activity relationship; hMCHR1, human MCH receptor 1 ; rMCHR1, rat MCH receptor 1 ; CHO, Chinese hamster ovary; DIO, diet-induced obesity; EDC, 1-ethyl-3-[3(dimethylamino)propyl]carbodiimide

REFERENCES

(1) Takekawa, S.; Asami, A.; Ishihara, Y.; Terauchi, J.; Kato, K.; Shimomura, Y.; Mori, M.; Murakoshi, H.; Kato, K.; Suzuki, N.; Nishimura, O.; Fujino, M. T-226296: A Novel, Orally Active and Selective Melanin-Concentrating Hormone Receptor Antagonist. Eur. J. Pharmacol. 2002, 438, 129-135.
(2) Kamata, M.; Yamashita, T.; Imaeda, T.; Tanaka, T.; Terauchi, J.; Miyamoto, M.; Ora, T.; Tawada, M.; Endo, S.; Takekawa, S.; Asami, A.; Suzuki, N.; Nagisa, Y.; Nakano, Y.; Watanabe, K.; Ogino, H.; Kato, K.; Kato, K.; Ishihara, Y. Discovery, Synthesis, and Structure-Activity Relationship of 6-Aminomethyl-7,8-dihydronaphthalenes as Human Melanin-Concentrating Hormone Receptor 1 Antagonists. Bioorg. Med. Chem. 2011, 19, 5539-5552.
(3) Sargent, P. A.; Sharpley, A. L.; Williams, C.; Goodall, E. M.; Cowen, P. J. 5-HT2c Receptor Activation Decreases Appetite and Body Weight in Obese Subjects. Psychopharmacology (Berlin) 1997, 133, 309-312.
(4) Halford, J. C.; Harrold, J. A.; Lawton, C. L.; Blundell, J. E. Serotonin (5-HT) Drugs: Effects on Appetite Expression and Use for the Treatment of Obesity. Curr. Drug Targets 2005, 6, 201-213.
(5) Smith, S. R.; Prosser, W. A.; Donahue, D. J.; Morgan, M. E.; Anderson, C. M.; Shanahan, W. R. APD356-004 Study Group. Lorcaserin (APD356), a Selective 5-HT2c Agonist, Reduces Body Weight in Obese Men and Women. Obesity (Silver Spring) 2009, 17, 494-503.
(6) Thomsen, W. J.; Grottick, A. J.; Menzaghi, F.; Reyes-Saldana, H.; Espitia, S.; Yuskin, D.; Whelan, K.; Martin, M.; Morgan, M.; Chen, W.; Al-Shamma, H.; Smith, B.; Chalmers, D.; Behan, D. Lorcaserin, a Novel Selective Human 5-Hydroxytryptamine2c Agonist: In Vitro and in Vivo Pharmacological Characterization. J. Pharmacol. Exp. Ther. 2008, 325, 577-587.
(7) Lee, J.; Jung, M. E.; Lee, J. 5-HT2c Receptor Modulators: A Patent Survey. Expert Opin. Ther. Pat. 2010, 20, 1429-1455.
(8) Carney, R. M.; Shelton, R. C. Agomelatine for the Treatment of Major Depressive Disorder. Expert Opin. Pharmacother. 2011, 12, 2411-2419.
(9) Kennett, G. A.; Wood, M. D.; Bright, F.; Trail, B.; Riley, G.; Holland, V.; Avenell, K. Y.; Stean, T.; Upton, N.; Bromidge, S.; Forbes, I. T.; Brown, A. M.; Middlemiss, D. N.; Blackburn, T. P. SB 242084, a Selective and Brain Penetrant 5-HT2c Receptor Antagonist. Neuropharmacology 1997, 36, 609-620.
(10) Tom, N. J.; Ruel, E. M. An Efficient Synthesis of Substituted Quinolines. Synthesis 2001, 2001, 1351-1355.
(11) Shimomura, Y.; Mori, M.; Sugo, T.; Ishibashi, Y.; Abe, M.; Kurokawa, T.; Onda, H.; Nishimura, O.; Sumino, Y.; Fujino, M. Isolation and Identification of Melanin-Concentrating Hormone as the Endogenous Ligand of the SLC-1 Receptor. Biochem. Biophys. Res. Соттип. 1999, 261, 622-626.
(12) Marsham, P. R.; Jackman, A. L.; Barker, A. J.; Boyle, F. T.; Pegg, S. J.; Wardleworth, J. M.; Kimbell, R.; O’Connor, B. M.; Calvert, A. H.; Hughes, L. R. Quinazoline Antifolate Thymidylate Synthase Inhibitors: Replacement of Glutamic Acid in the C2-Methyl Series. J. Med. Chem. 1995, 38, 994-1004.

[^0]: Received: November 25, 2011
 Published: February 6, 2012

